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Abstract
We propose a decentralized variant of Monte Carlo tree search (MCTS) that is suitable for a variety of tasks in multi-robot
active perception. Our algorithm allows each robot to optimize its own actions by maintaining a probability distribution
over plans in the joint-action space. Robots periodically communicate a compressed form of their search trees, which
are used to update the joint distribution using a distributed optimization approach inspired by variational methods. Our
method admits any objective function defined over robot action sequences, assumes intermittent communication, is any-
time, and is suitable for online replanning. Our algorithm features a new MCTS tree expansion policy that is designed for
our planning scenario. We extend the theoretical analysis of standard MCTS to provide guarantees for convergence rates
to the optimal payoff sequence. We evaluate the performance of our method for generalized team orienteering and online
active object recognition using real data, and show that it compares favorably to centralized MCTS even with severely
degraded communication. These examples demonstrate the suitability of our algorithm for real-world active perception
with multiple robots.
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1. Introduction

Information gathering is an important family of problems in
robotics that plays a primary role in a wide variety of tasks,
including scene understanding (Fäulhammer et al., 2017),
manipulation (Kahn et al., 2015), environmental monitor-
ing (Dunbabin and Marques, 2012), and target localization
(Cliff et al., 2015). Although the idea of exploiting robot
motion to improve the quality of information gathering has
been studied for nearly three decades (Bajcsy, 1988; Bajcsy
et al., 2017), most real robot systems today (both single and
multi-robot) still gather information passively. The motiva-
tion for an active approach is that sensor data quality (and,
hence, perception quality) relies critically on an appropri-
ate choice of viewpoints (Patten et al., 2016). One way to
efficiently achieve an improved set of viewpoints is through
teams of robots, where concurrency allows for scaling up
the number of observations in time and space. The key chal-
lenge, however, is to coordinate the behavior of robots as
they actively gather information. Ideally, this coordination
should be decentralized so that the system is scalable and
robust to failures. This paper presents an online, decentral-
ized planning algorithm for active perception that allows a
team of robots to perform complex information gathering

tasks using physically feasible sensor and motion models,
and reasonable communication assumptions.

Monte Carlo tree search (MCTS) is a promising approach
for online planning because it efficiently searches over long
planning horizons and is anytime (Browne et al., 2012; Koc-
sis and Szepesvári, 2006). MCTS is applicable to general
problem formulations but can readily incorporate problem-
specific heuristics. Recently, MCTS has been successfully
applied to robotics scenarios such as active object recog-
nition (Patten et al., 2017), wildlife monitoring (Hefferan
et al., 2016), and planetary exploration (Arora et al., 2017).
These studies were for single-robot problems, whereas in
this paper we propose a new planning algorithm that is
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a viable solution for all of these scenarios extended to
multi-robot teams.

In this paper we propose a new decentralized planning
algorithm, Dec-MCTS, that is essentially a novel decen-
tralized variant of MCTS. At a high level, our method
alternates between exploring each robot’s individual action
space and optimizing a probability distribution over the
joint-action space. In any particular round, we first use a
new variant of MCTS to find locally favorable sequences
of actions for each robot given probabilistic estimates of
other robots’ actions that evolve during planning time. The
main novelty is our new tree expansion policy, motivated
by discounted upper confidence bound (D-UCB) (Garivier
and Moulines, 2011), that accounts in general for changing
reward distributions.

Then, robots periodically attempt to asynchronously
communicate a highly compressed version of their local
search trees that, together, correspond to a product distri-
bution approximation. These communicated distributions
are used to estimate the underlying joint distribution for
the teams’ plan. The estimates are probabilistic, unlike the
deterministic representation of joint actions typically used
in multi-robot coordination algorithms. Optimizing a prod-
uct distribution is similar in spirit to the mean-field approx-
imation from variational inference, and also has a natural
game-theoretic interpretation (Rezek et al., 2008; Wolpert
and Bieniawski, 2004).

Our algorithm is a powerful new method of decentral-
ized coordination for any objective function defined over
the robot action sequences. Notably, this implies that our
method is suitable for complex perception tasks such as
object classification, which is known to be highly dependent
on the viewpoint (Patten et al., 2016). Further, communica-
tion is assumed to be intermittent, and the amount of data
sent over the network is small in comparison with the raw
data generated by typical range sensors and cameras. Our
method also inherits important properties from MCTS, such
as the ability to compute anytime solutions and to incorpo-
rate prior knowledge about the environment. Moreover, our
method is suitable for online replanning to adapt to changes
in the objective function or team behavior.

We provide an extensive theoretical analysis of the algo-
rithm that leverages results from probability theory and
game theory. Our main analytical result is to show conver-
gence rates for the expected payoff at the root of the search
tree towards the optimal payoff sequence. Thus, the pro-
posed MCTS tree expansion policy balances exploration
and exploitation while the reward distributions are chang-
ing. This result is proven by extending the MCTS analysis
of Kocsis et al. (2006) for the context of switching bandit
problems (Garivier and Moulines, 2011). Our second ana-
lytical result leverages the work of Wolpert et al. (2006)
to show that the product distribution optimization phase
locally minimizes the Kullback–Leibler (KL) divergence to
the optimal joint probability distribution. Although, given
the difficulty of the problem, these results do not directly

yield guarantees for global optimality, the analysis pro-
vides strong motivation for the use of these components in
our algorithm for decentralized, long-horizon planning with
general objective function definitions.

We empirically evaluate our algorithm in two scenarios:
generalized team orienteering and active object recognition.
These experiments are run in simulation, where the robots
traverse a probabilistic roadmap (PRM) with a Dubins
motion model, and the second scenario uses range sensor
data collected a priori by real robots. We show that our
decentralized approach performs as well as or better than
centralized MCTS even with a significant rate of commu-
nication message loss. We also show the benefits of our
algorithm in performing long-horizon and online planning.

1.1. Contributions

In this paper we propose a new multi-robot planning algo-
rithm that is decentralized, admits a general class of objec-
tive functions, optimizes actions over a long planning hori-
zon, is anytime, robust to communication degradation,
and is suitable for online replanning. The algorithm is a
novel decentralized variant of MCTS, which features a new
tree expansion policy suitable for our context, and com-
bines MCTS with a probabilistic distributed optimization
approach inspired by variational methods. We provide a
theoretical analysis and empirical results that demonstrate
the suitability of our planning algorithm for coordinated
information-gathering tasks.

This paper is an extended and revised version of Best
et al. (2016) presented at WAFR 2016. The main new con-
tribution is a theoretical analysis of the key MCTS com-
ponent of our algorithm by relating it to a new multi-armed
bandit (MAB) problem. In addition, we provide an extended
review of related literature, expanded algorithmic details,
a discussion of generalizations for probabilistic objectives,
and implementation details.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work in decentralized planning,
MCTS, variational methods, and non-myopic planning.
Section 3 defines the decentralized planning problem. Sec-
tion 4 presents our proposed Dec-MCTS algorithm. Sec-
tion 5 provides a theoretical analysis of Dec-MCTS, with
proofs of intermediate results provided in the Appendix.
Sections 6 and 7 present an empirical analysis of our algo-
rithm for two example active perception problems. Finally,
Section 8 concludes the paper and discusses future work.

2. Related work

2.1. Decentralized information gathering

Information-gathering problems can be viewed as sequen-
tial decision processes in which actions are chosen to max-
imize an objective function. The computational burden of
decentralized coordination is typically overcome by using
myopic solvers which maximize the objective function over
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a limited time horizon (Xu et al., 2013; Gan et al., 2014).
Unfortunately, the quality of solutions produced by myopic
methods can be arbitrarily poor in general. Recently, how-
ever, analysis of submodularity (Nemhauser et al., 1978)
has shown that myopic methods can achieve near-optimal
performance (Krause et al., 2008), which has led to consid-
erable interest in their application to information gathering
with multiple robots (Garg and Ayanian, 2014; Hollinger
et al., 2009; Patten et al., 2013; Singh et al., 2009). Whereas
these greedy methods provide theoretical guarantees, they
require a submodular objective function, which is not appli-
cable in all cases. In addition, whereas these methods often
guarantee lower bounds on optimality, the solution quality
can typically be improved by planning over longer horizons.
Similarly, for simplified problems that only require select-
ing one action per robot rather than sequences of actions,
decentralized task allocation approaches are often sufficient
(Liu et al., 2015).

Efficient non-myopic decentralized coordination algo-
rithms can be designed by exploiting problem-specific
characteristics. Market-based methods (Dias et al., 2006)
involve each robot negotiating over which tasks it will per-
form, and are more appropriate for coverage and explo-
ration problems (Zlot et al., 2002). Sadeghi and Smith
(2017) applied an auction method with traveling salesman
problem (TSP) heuristics to a problem formulated as a gen-
eralization of the TSP. Stranders et al. (2009) combined
max-sum message passing with branch and bound pruning
to find sequences of viewpoints that minimize the entropy
of a Gaussian process. Otte and Correll (2013) proposed a
distributed rapidly exploring random tree (RRT) algorithm
for coordinated path planning with collision avoidance.
The authors demonstrated a graceful degradation of per-
formance as communication becomes less reliable, and we
observe a similar behavior with our Dec-MCTS algorithm.
Corah and Michael (2017) proposed a distributed sequential
greedy assignment algorithm for multi-robot exploration,
and provided performance guarantees by exploiting a sub-
modularity assumption. Atanasov et al. (2015) propose a
decentralized algorithm for tracking targets that have lin-
ear Gaussian dynamics, such as for active simultaneous
localization and mapping (SLAM). Our proposed algorithm
is applicable to a general class of problems since it does
not rely on specific assumptions about the problem; how-
ever, our approach can readily incorporate problem-specific
approximate solutions, such as those above, as heuristics to
guide the search.

2.2. Dec-POMDPs

Decentralized active information gathering can be viewed,
in general, as a partially observable Markov decision
process (POMDP) in decentralized form (Dec-POMDP)
(Bernstein et al., 2002; Oliehoek and Amato, 2016). Typ-
ically, Dec-POMDP formulations are solved by perform-
ing centralized, offline planning over the joint multi-agent

policy space, and then these policies are executed online
in a decentralized fashion (Amato, 2015; Kumar et al.,
2015; Oliehoek and Amato, 2016; Omidshafiei et al., 2017).
These centralized, offline planning approaches are imprac-
tical in scenarios with large sources of uncertainty, such
as when the state of the environment is unknown ahead of
time.

In contrast, Spaan et al. (2006) addressed a Dec-POMDP
problem setting where both planning and execution are per-
formed in a decentralized manner; we solve our problem
in a similar decentralized setting such that computation is
performed online and on-board the team of robots. Spaan
et al. (2006) proposed a general Dec-POMDP solver where
each agent solves a single-agent POMDP, shares informa-
tion about its own plan, then repeats. At a high level, our
algorithm is similar to this general approach, but we dif-
fer in how we share information, and we propose solving
the single-agent subproblems with an anytime, incremental
planner that can account for changing information about the
teams’ plan in a principled manner.

While the problem definition we consider in this paper is
not formulated as a Dec-POMDP in general form, extended
algorithms for the Dec-POMDP case could be designed by
using partially observable Monte Carlo planning (POMCP)
(Silver and Veness, 2010).

2.3. MCTS

MCTS has recently become popular for online planning
in robotics. MCTS has been proposed in many different
forms (Browne et al., 2012), but by far the most common is
the upper-confidence bounds applied to trees (UCT) algo-
rithm (Kocsis and Szepesvári, 2006; Kocsis et al., 2006).
The UCT algorithm performs an asymmetric expansion of
a search tree using a best-first policy that generalizes the
UCB1 policy for MAB problems (Auer et al., 2002). This
expansion policy provides theoretical guarantees for a poly-
nomial bound on regret and therefore is said to balance
between exploration and exploitation. Several variants to
UCT have been proposed, such as for exploiting smoothness
of the reward function (Coquelin and Munos, 2007). A key
component of our proposed Dec-MCTS algorithm is a novel
UCT variant, D-UCT, that accounts for a changing reward
distribution by using a new expansion policy that gener-
alizes the D-UCB policy for switching bandit problems
(Garivier and Moulines, 2011). MCTS algorithms have also
been extended for problems with partial-observability, such
as the POMCP (Silver and Veness, 2010) and DESPOT
(Somani et al., 2013) algorithms, and Dec-MCTS could be
extended in a similar way. However, MCTS has not yet been
extended for decentralized multi-agent planning, which is
the focus of this paper.

MCTS is parallelizable (Chaslot et al., 2008), and vari-
ous techniques have been proposed that split the search tree
across multiple processors and combine their results. In the
multi-robot case, the joint search tree interleaves actions of
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individual robots and it remains a challenge to effectively
partition this tree. Auger (2011) addressed the related case
of multi-player games, where a separate tree is maintained
for each player; however, a single simulation traverses all
of the trees and therefore this approach would be diffi-
cult to decentralize. We propose a similar approach, except
that each robot performs independent simulations while
sampling from a locally stored probability distribution that
represents the other robots’ action sequences.

MCTS has been applied to a wide variety of single-robot
tasks, including active object recognition (Lauri et al., 2015;
Patten et al., 2017), patrolling environments with adver-
sarial agents (Hefferan et al., 2016; Kartal et al., 2015),
information gathering by a glider in thermal wind fields
(Nguyen et al., 2015), environment exploration (Corah and
Michael, 2017; Lauri and Ritala, 2016), autonomous sci-
ence by planetary rovers (Arora et al., 2017), active param-
eter estimation for manipulation (Slade et al., 2017), and
monitoring of a spatiotemporal process (Marchant et al.,
2014). We propose a decentralized MCTS algorithm that
is suitable for multi-robot generalizations of all of these
problems. So far, MCTS has been less frequently studied
in multi-robot scenarios, though promising ideas have been
presented by Kartal et al. (2015) for centralized planning
of a team of patrolling robots, and by Corah and Michael
(2017) as a single-robot planner within a distributed multi-
robot assignment algorithm for the context of exploration
and mapping.

2.4. Variational methods for planning

Coordination between robots is achieved in our method by
combining MCTS with a framework that optimizes a prod-
uct distribution over the joint action space in a decentralized
manner. Our approach is analogous to the classic mean-field
approximation and related variational methods (Koller and
Friedman, 2009; Rezek et al., 2008; Yedidia et al., 2005).
Other graphical model inference techniques, alternative to
variational methods, have motivated related coordination
algorithms (Kumar et al., 2015; Regev and Indelman, 2016;
Stranders et al., 2009).

Variational methods seek to approximate the underlying
global likelihood with a collection of structurally simpler
distributions that can be evaluated efficiently and indepen-
dently. These methods characterize convergence based on
the choice of product distribution, and work best when it
is possible to strike a balance between the convergence
properties of the product distribution and the KL diver-
gence between the product and joint distributions. As dis-
cussed in the body of work on probability collectives (PC)
(Wolpert and Bieniawski, 2004; Wolpert et al., 2006, 2013),
such variational methods can also be viewed under a game-
theoretic interpretation, where the goal is to optimize each
agent’s action selection based on examples of the global
reward/utility function.

PC has been applied to robotics problems, but so far
has been limited to selecting a single action from a small
action space (Waldock and Nicholson, 2007), rather than
planning sequences of actions. An exception to this is the
work of Kulkarni and Tai (2010), who combined PC with
TSP heuristics to solve the multiple-TSP in a decentralized
manner. We propose a similar approach to Kulkarni and Tai
(2010), but instead we leverage the long-horizon planning
of MCTS to dynamically select an effective and compact
sample space of action sequences.

2.5. Non-myopic, single-robot planning

Long-horizon planning is also beneficial for single-robot
information gathering. As discussed in Section 2.3, MCTS
approaches have recently gained popularity. Branch and
bound tree search (Binney and Sukhatme, 2012; Best
and Fitch, 2016) is closely related to MCTS but requires
problem-specific bounds with hard guarantees; in contrast,
UCT relies on generally applicable probabilistic bounds
derived from the Chernoff–Hoeffding inequality. Active
perception problems have also been formulated as TSP vari-
ants (Best et al., 2018; Charrow, 2015; Yu et al., 2016).
A sampling-based planner has been proposed for explo-
ration and inspection tasks (Bircher et al., 2016). Exten-
sions of RRT have been designed for problems where the
environment is naturally modeled as a continuous process
(Hollinger and Sukhatme, 2014), e.g. Gaussian processes.
Hollinger (2015) extends the RRT approach to be more suit-
able for real-time planning. In exploration scenarios, imi-
tation learning can be used for planning by learning from
examples that have assumed full knowledge of the world
(Choudhury et al., 2017). For active object recognition, a
primary motivating scenario for Dec-MCTS, planning has
typically been limited to greedy approaches (Huber et al.,
2012; van Hoof et al., 2014; Wu et al., 2015); MCTS
approaches are notable exceptions (Lauri et al., 2015; Patten
et al., 2017).

3. Problem statement

We consider a team of R robots {1, 2, . . . , R}, where each
robot r plans its own sequence of future actions xr =
( xr

1, xr
2, . . . ). Each action xr

j has an associated cost cr
j and

each robot has a cost budget Br such that the sum of the
costs must be less than the budget, i.e.

∑
xr

j∈xr cr
j ≤ Br.

This cost budget may be an energy or time constraint
defined by the application, or it may be used to enforce
a planning horizon. The feasible set of actions and asso-
ciated costs at each step j are a function of the previous
actions ( xr

1, xr
2, . . . , xr

j−1). Thus, there is a predefined set
X r of feasible action sequences xr for each robot r. We
use x to denote the set of action sequences for all robots
x := {x1, x2, . . . , xR} and x(r) to denote the set of action
sequences for all robots except robot r, i.e. x(r) := x \ xr.
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We use X to denote the set of all feasible x and X (r) to
denote the set of all feasible x(r).

The aim is to maximize a global objective function g( x)
that is a function of the action sequences of all robots. We
assume each robot r knows the global objective function g,
but does not know the action sequences x(r) selected by the
other robots. For most of our proposed approach, we assume
g is deterministic given a known set of action sequences
x; in Section 4.7 we discuss extensions for probabilistic
objective functions.

The problem must be solved in a decentralized and online
setting. We assume that robots can communicate during
planning time to improve coordination. The communica-
tion channel may be unpredictable and intermittent, and
all communication is asynchronous. Therefore, each robot
will plan based on the information it has available locally.
Bandwidth may be constrained and therefore message sizes
should remain small, even as the plans grow. Although we
do not consider explicitly planning to maintain commu-
nication connectivity, this may be encoded in the objec-
tive function g( x) if a reliable communication model is
available.

4. Dec-MCTS

In this section, we present our Dec-MCTS algorithm as a
decentralized solution to the general multi-robot planning
problem. We first provide an overview of the algorithm
followed by a detailed explanation of all components.

4.1. Algorithm overview

Dec-MCTS runs simultaneously and asynchronously on all
robots; we present the algorithm from the perspective of
robot r. The algorithm cycles between the three phases illus-
trated in Figure 1: (1) incrementally grow a search tree
using MCTS while taking into account information about
the other robots’ plans; (2) update the probability distri-
bution over possible action sequences; and (3) communi-
cate probability distributions with the other robots. These
three phases continue regardless of whether or not the com-
munication was successful, until a computation budget is
met.

A key idea of Dec-MCTS is to represent and reason over
plans in a probabilistic manner. In particular, robot r’s cur-
rent plan is represented by a probability distribution over
action sequences. We define a probability mass function qr

n,
such that qr

n( xr) defines the probability that robot r will
select the action sequence xr. In general, the domain of the
distribution qr

n is the set of all possible action sequences X r.
However, to enable tractable computation and realistic com-
munication, we restrict the domain of qr

n to a dynamically
selected subset X̂ r

n ⊂ X r, i.e. qr
n( xr)= 0,∀xr /∈ X̂ r

n . As the
Dec-MCTS algorithm progresses, both the domain X̂ r

n and

the probability distribution qr
n are optimized. Note the sub-

script n for qr
n and X̂ r

n is used to denote the nth iteration of
the main loop of our algorithm.

An illustration of the main loop is shown in Figure 1 and
pseudocode for the algorithm is provided in Algorithm 1.
During the MCTS phase, a search tree T r is grown over
the space X r of robot r’s action sequences using a new
variant of the UCT algorithm. This tree growth is per-
formed while considering the probability distributions over
the other robots plans, denoted X̂ (r)

n , q(r)
n . Periodically, the

domain X̂ r
n for robot r’s distribution is updated by selecting

the most promising action sequences identified by the tree
search. In the probability distribution optimization phase,
the probabilities assigned to action sequences qr

n( xr) are
optimized using a decentralized gradient descent algorithm
while considering the distributions of the other robots. In
the communication phase, robot r communicates its domain
X̂ r

n and probability distribution qr
n to the other robots. If

robot r receives a new distribution from any of the other
robots, then in the next iteration X̂ r

n and qr
n are optimized

while considering this new information. During this opti-
mization process, it is possible that q(r)

n will change such
that a previously optimal leaf of the tree T r becomes sub-
optimal; we refer to the times at which this happens as
breakpoints.

When the computation budget is met, the algorithm
returns the action sequence xr that has the highest probabil-
ity qr

n( xr). In online settings, the robot would then typically
execute the first action xr

1 in the action sequence, and then
perform replanning to take into account new information
received by observations. If the changes to the objective
function are minor, then replanning may be performed more
efficiently by adapting the previous search tree.

4.2. Local utility function

The global objective function g is optimized by each robot
r using a local utility function f r. We define f r as the
difference in global utility between robot r performing
action sequence xr and a default “no reward” sequence xr

∅,
assuming fixed action sequences x(r) for the other robots,
i.e.

f r( x) := g( xr ∪ x(r))−g( xr
∅ ∪ x(r)) (1)

The default sequence xr
∅ is chosen to be suitable for

the application and would typically be an empty action
sequence. In practice, optimizing with respect to f r rather
than g improves the performance since f r is more sensitive
to robot r’s plan and the variance of f r is less affected by
the uncertainty of the other robots’ plans (Wolpert et al.,
2013). We chose this local utility function since it is gen-
erally applicable, although further performance improve-
ments could be achieved with problem-specific heuristics
(Rahmattalabi et al., 2016). We note that this formulation
assumes that all robots know the global utility function
g. However, if instead each robot only has access to a
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Algorithm 1 Overview of Dec-MCTS for robot r.
input: global objective function g, budget Br, feasible action sequences and costs
output: sequence of actions xr for robot r

1: T r ← initialize MCTS tree
2: while computation budget not met, at iteration n do
3: X̂ r

n ← SELECTSETOFSEQUENCES( T r) 	 See Section 4.4
4: for τn iterations do
5: T r ← GROWTREE( T r, X̂ (r)

n , q(r)
n , Br) 	 See Algorithm 2 and Section 4.3

6: qr
n ← UPDATEDISTRIBUTION( X̂ r

n , qr
n, X̂ (r)

n , q(r)
n , β) 	 See Algorithm 3 and Section 4.4

7: COMMUNICATIONTRANSMIT( X̂ r
n , qr

n) 	 See Section 4.5

8: ( X̂ (r)
n , q(r)

n )← COMMUNICATIONRECEIVE 	 See Section 4.5
9: β ← COOL( β) 	 See Section 4.4

10: return xr ← arg maxxr∈X̂ r
n

[
qr

n( xr)
]

Fig. 1. Overview of the algorithm running on-board robot r. (1) The search tree is expanded by adding new actions (green). Periodically,
the set of best nodes (orange) is selected as the domain X̂ r

n . (2) The probability distribution qr
n is optimized (from dotted red to solid

blue). (3) If possible, the domains and distributions are communicated between robots.

local estimate of g then our proposed algorithm will opti-
mize the action sequences with respect to this inconsistent
information.

4.3. MCTS with D-UCB

The first phase of the algorithm is the MCTS update shown
in Algorithm 2. A single search tree T r is maintained by
robot r that only contains the actions of robot r. The tree
T r is defined such that each edge in the tree represents
an action by robot r, and a path from the root node i0
to another node id at depth d represents a valid sequence
of actions by robot r. The MCTS algorithm incrementally
grows T r from the root node using a best-first expansion
policy. During the MCTS phase, coordination with other
robots occurs implicitly by considering the plans of the
other robots when performing the rollout policy and evalua-
tion of the global objective function. This information about
the other robots’ plans comes from the second phase of
the algorithm, detailed later in Section 4.4. In this section,
we detail our proposed MCTS algorithm which features a
novel bandit-based node selection policy designed for our
planning scenario.

Standard MCTS incrementally grows a tree by iterat-
ing through four phases: selection, expansion, simulation,
and backpropagation (Browne et al., 2012). During each
iteration t, a new leaf node is added, where each node repre-
sents a sequence of actions and contains statistics about the
expected reward of all action sequences that begin with this
sequence.

The selection phase (Algorithm 2, line 3) selects an
expandable node in the tree, where an expandable node is
defined as a node that has at least one child that has not yet
been visited during the search. In order to find an expand-
able node, the algorithm begins at the root node i0 of the
tree and recursively selects child nodes until an expandable
node id−1 is reached. For selecting the next child at each
level of the tree, we propose an extension of the UCT pol-
icy (Kocsis and Szepesvári, 2006), detailed in Section 4.3.1,
to balance exploration and exploitation. In the expansion
phase (Algorithm 2, line 4), a new child node id is added
to the selected expandable node id−1, which extends the
parent’s action sequence with an additional action.

In the simulation phase (Algorithm 2, lines 5–7), the
expected utility E[g] of the expanded node id is estimated
by performing and evaluating a rollout policy that extends
the action sequence represented by the node until a terminal
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Algorithm 2 Grow the search tree for robot r using MCTS.

1: function GROWTREE(T r, X̂ (r)
n , q(r)

n , Br)
input: partial tree T r, distributions for other robots ( X̂ (r)

n , q(r)
n ), budget Br

output: updated partial tree T r

2: for fixed number of samples do
3: id−1 ← NODESELECTIOND-UCT( T r) 	 Select node to expand using D-UCT policy (Section 4.3.1)
4: id ← EXPANDTREE( id−1) 	 Add new child to node id−1

5: x(r) ← SAMPLE( X̂ (r)
n , q(r)

n ) 	 Sample action sequences of other robots
6: xr ← PERFORMROLLOUTPOLICY( id , x(r), Br) 	 Default policy until budget exhausted
7: Ft ← f r( xr ∪ x(r)) 	 Local utility function (Section 4.2)
8: T r ← BACKPROPAGATION( T r, id , Ft) 	 Update statistics in tree

9: return T r

state is reached. This rollout policy could be a random pol-
icy or a heuristic for the problem (James et al., 2017). The
objective is evaluated for this sequence of actions and this
result is saved.

For our problem, the objective is a function of the action
sequence xr as well as the unknown plans of the other robots
x(r), and thus we require an extension of the standard sim-
ulation procedure. To compute the rollout score, we first
sample x(r) from a probability distribution q(r)

n over the plans
of the other robots (as defined in Section 4.1). A heuris-
tic rollout policy extended from id defines xr, which should
be a function of x(r) to simulate coordination between the
robots. In addition, we optimize xr using the local utility f r

(as defined in (1)) rather than g. The rollout score is com-
puted as the utility of this joint sample f r( xr ∪ x(r)), which
is an estimate for Eqn [ f r | xr]. We denote Ft as the rollout
evaluation at sample round t.

In the backpropagation phase (Algorithm 2, line 8), the
rollout evaluation Ft is added to the statistics of all nodes
along the path from the expanded node back to the root of
the tree. Typically, these statistics are unbiased estimators
of the rollout evaluations; however, as we discuss in the fol-
lowing section, it is more suitable to use a weighted average
in the context of Algorithm 1.

4.3.1. D-UCB node selection policy. The node selection
policy is used in Algorithm 2, line 3, and dictates the order
in which the tree T r is expanded. Consider an arbitrary
node id at depth d in the tree which has an associated set
of child nodes C( id). For every sample round t where node
id is visited, the problem is to select a child Iid ,t ∈ C( id)
that balances both visiting promising subtrees and exploring
uncertain ones.

An established approach for node selection is based on
maintaining an upper confidence bound (UCB) on the value
of each node. Under this paradigm, at each sample round t,
a UCB Uj,tid ,tj is computed for all children j ∈ C( id) of the
parent node id . Here, tid is the number of times the parent
node id has been visited and tj is the number of times child
node j has been visited. The algorithm then selects the node

that maximizes this quantity, i.e.

Iid ,t = arg max
j∈C(id )

Uj,tid ,tj (2)

This continues recursively until an expandable node is
reached.

The de facto UCB Uj,tid ,tj is a combination of the empir-
ical mean of rewards received at node j and a confidence
interval derived from the Chernoff–Hoeffding inequality
(Browne et al., 2012). This bound was originally used in
the context of the MAB problem and called UCB1 (Auer
et al., 2002); when used for tree search, it is labeled UCT
(Kocsis and Szepesvári, 2006). UCT was shown to yield
polynomial regret when the reward distributions at the leaf
nodes are stationary (Kocsis and Szepesvári, 2006). How-
ever, Algorithm 1 alternates between growing the tree for
a number of rollouts τn and updating the probability distri-
butions for other robots. As mentioned in Section 4.1, this
introduces breakpoints as instants where the reward distri-
bution and optimal action can change abruptly. We denote
the number of breakpoints up until time t as ϒt. Owing to
these breakpoints, the most recent rollouts are more relevant
since they are obtained by sampling the most recent dis-
tributions. It was shown by Garivier and Moulines (2011)
that UCB1 is inefficient in the bandit setting when break-
points are expected. In this scenario a discounted variant,
termed D-UCB, yields tighter bounds on regret. Owing to
the expected breakpoints caused by updating the distribu-
tions, we extend the approach of Garivier and Moulines
(2011) for tree search, and propose a discounted variant of
UCT for node selection, which we term D-UCT, described
as follows.

Given some discount factor γ ∈( 1/2, 1) and exploration
constant Cp > 1/

√
8, the D-UCT bound is defined as

Uj,tid ,tj ( γ ) := F̄j,tj ( γ )+ctid ,tj ( γ ) (3)

where F̄j,tj ( γ ) is the discounted empirical reward, and
ctid ,tj ( γ ) is a discounted exploration bonus. A lower dis-
count factor γ enforces only the most recent rollouts to
contribute towards the UCB, whereas at the upper limit
γ → 1 D-UCT becomes equivalent to UCT. These quanti-
ties are computed as follows. First, recall that the indicator
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function 1{Iid ,t=j} returns 1 if node j was selected at round
t, and 0 otherwise. Then, denote the discounted number of
times the child node j has been visited as

tj( γ ) :=
t∑

u=1

γ t−u1{Iid ,u=j} (4)

and the discounted number of times the parent node has
been visited as

tid ( γ ) :=
∑

j∈C(id )

tj( γ ) (5)

Recall that Ft is the rollout score received at sample t. Then,
the discounted empirical average is given by

F̄j,tj ( γ ) := 1

tj( γ )

t∑
u=1

γ t−uFu1{Iid ,u=j} (6)

and the discounted exploration bonus is defined as

ctid ,tj ( γ ) := 2Cp

√
log tid ( γ )

tj( γ )
(7)

The aim of an online planner, such as Dec-MCTS, is to
find the best first action, execute this action, and then replan.
Thus, we are interested in the convergence of the root node
towards selection of the optimal action. Given the expected
upper bound on the number of breakpoints occurring in the
subtree rooted at node j, i.e. E[ϒtj ], selecting the discounted
factor as

γtj = 1−
√

E[ϒtj ]

16tj
(8)

allows us to minimize the time for this convergence. This
is analyzed further in Section 5. Having γ change dynami-
cally, such as in (8), makes it difficult to efficiently recom-
pute F̄j,tj and ctid ,tj as t grows large. Therefore, in practice,
typically it is best to set γ to a fixed constant.

4.4. Decentralized product distribution
optimization

The second phase of the algorithm updates a probability
distribution qr

n over the set of possible action sequences
for robot r. The distribution qr

n serves as a way of pre-
dicting the likelihood of an action sequence being selected
as the search tree continues to grow. These distributions
are communicated between robots and used when perform-
ing rollouts during future iterations of MCTS. To define
and optimize these distributions in a decentralized manner
for improving global utility, we adapt a type of variational
method originally proposed by Wolpert and Bieniawski
(2004). This formulation can be viewed as a game between
independent robots, where each robot selects its action
sequence by sampling from a distribution. The approach to

solving this formulation is essentially a decentralized gradi-
ent descent method over the space of product distributions.
Pseudocode is provided in Algorithm 3.

One challenge is that the set of possible action sequences
X r typically has a cardinality that is exponential in the time
horizon. We obtain a sparse representation by periodically
selecting the sample space X̂ r

n ⊂ X r as the most promising
action sequences {xr

1, xr
2, . . .} found by MCTS so far (Algo-

rithm 1, line 3). We select a fixed number of nodes in the
search tree T r that currently have the highest discounted
empirical average F̄( γ ). The set X̂ r

n is chosen as the action
sequences used during the initial rollouts when the selected
nodes were first expanded.

As mentioned in Section 4.1, when the sample spaces
X̂ (r)

n are updated, this can introduce breakpoints in the
reward distribution of robot r. Thus, we expect the maxi-
mum number of breakpoints E[ϒt] to be given by the num-
ber of changes to the sample spaces. To ensure convergence
of the utility, each period τn is governed by a function of
t such that {E[ϒt]}t is bounded from above. An example
definition for τn is provided in Remark 2 in Section 5.

The set X̂ r
n has an associated probability distribution qr

n
such that qr

n( xr) defines the probability that robot r will
select xr ∈ X̂ r

n . The distributions for different robots are
independent and therefore they collectively define a prod-
uct distribution qn, such that the probability pn of a joint
action sequence selection x is

pn( x)= qn( x) :=
∏

r∈{1,...,R}
qr

n( xr) (9)

The advantage of defining pn as a product distribution is so
that each robot selects its action sequence independently,
and therefore allows decentralized execution.

Consider the general class of joint probability distribu-
tions pn that are not restricted to product distributions.
Define the expected global objective function for a joint
distribution pn as Epn [g], and let � be a desired value
for Epn [g]. According to the maximum entropy principle,
the most likely pn that satisfies E[g] = � is the pn that
maximizes entropy. The most likely pn can be found by
minimizing the maxent Lagrangian, defined as

L( pn) := λ
(
� − Epn [g]

)− H( pn) (10)

where

H( pn) :=−
∑
x∈X

pn( x) ln (pn( x) ) (11)

is the Shannon entropy and λ is a Lagrange multiplier. The
intuition is to iteratively increase � and optimize pn. A
descent scheme for pn can be formulated with Newton’s
method.

For decentralized planning and execution, we are inter-
ested in optimizing the product distribution qn rather than
a more general joint distribution pn. We can approximate
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Algorithm 3 Probability distribution optimization for robot r.

1: function UPDATEDISTRIBUTION(X̂ r
n , qr

n, X̂ (r)
n , q(r)

n , β)
input: action sequence set for each robot X̂n := {X̂ 1

n , X̂ 2
n , . . . , X̂ R

n }
with associated probability distributions {q1

n, q2
n, . . . , qR

n },
update parameter β,
constant α (e.g. α = 0.01),

output: updated probability distribution qr
n for robot r

2: for each xr ∈ X̂ r
n do

3: Eqn [ f r]←∑
x∈X̂n

[
f r( x)

∏
r′∈{1,...,R} q

r′
n ( xr′ )

]
4: Eqn [ f r | xr]←∑

x(r)∈X̂ (r)
n

[
f r( xr ∪ x(r))

∏
r′∈{1,...,R}\r qr′

n ( xr′ )
]

5: qr
n( xr)← qr

n( xr)−αqr
n( xr)

[
Eqn [ f r]− Eqn [ f r | xr]

β
+ H( qr

n)+ ln
(
qr

n( xr)
)]

6: qr
n ← NORMALIZE( qr

n)

7: return qr
n

qn by finding the qn with the minimum pq KL divergence,
where the pq KL divergence is defined as

DKL( pn ‖ qn) :=
∑
x∈X

pn( x) ln

(
pn( x)

qn( x)

)
(12)

This formulates a descent scheme with the update policy for
qr

n shown in Algorithm 3, line 5, where we use f r (as defined
in (1)) rather than g, and the expectations Eqn are defined
with respect to the product distribution qn. Intuitively, this
update rule increases the probability that robot r selects xr if
this results in an improved local utility, while also ensuring
the entropy of qr

n does not decrease too rapidly. The former
behavior is controlled by the

(
Eqn [ f r]− Eqn [ f r | xr]

)
/β

term in the update rule, while the latter behavior is con-
trolled by H( qr

n)+ ln
(
qr

n( xr)
)
. Parameter β specifies the

balance between these two behaviors.
Pseudocode for this approach is in Algorithm 3. Each

iteration of the loop beginning at line 2 updates the prob-
ability qr

n( xr) of performing an action sequence xr. We
require computing two expectations (lines 3–4) to evaluate
the update equation (line 5). In general, to compute these
expectations exactly it is necessary to sum over the enu-
meration of all x ∈ X̂n. It is infeasible to perform this enu-
meration at every iteration, and therefore these expectations
should instead be approximated using random sampling of
X̂n. For certain problem definitions, it may be possible to
efficiently compute these expectations exactly by exploit-
ing the structure of the problem, such as in our Section 6
experiments.

As the Dec-MCTS algorithm progresses, the parameter
β should slowly decrease in order to slowly decrease the
entropy of the probability distributions. The cooling sched-
ule for β could be a fixed rate of descent or a more elaborate
schedule (Wolpert et al., 2006). The parameter α is a fixed
step size for the gradient descent. When the sample space
X̂ r

n changes (Algorithm 1, line 3), theoretically it is possible
to keep and update the previous distribution, i.e. qr

n = qr
n−1,

by maintaining qr
n over the entire space X r. However, in

practice, this is likely to become inefficient as the number
of action sequences that have ever appeared in a sample
space grows, particularly when calculating the expectations
and normalizing, as well as when communicating these dis-
tributions. Instead, we suggest resetting qr

n to a uniform
distribution and β to its initial value whenever X̂ r

n changes.

4.5. Communication

At each iteration of the inner-loop of Algorithm 1, robot r
communicates its current probability distribution ( X̂ r

n , qr
n)

to the other robots. If robot r receives an updated distribu-
tion ( X̂ r′

n , qr′
n ) from another robot r′, then ( X̂ r′

n , qr′
n ) replaces

the locally stored distribution for r′. The updated distribu-
tion is used during the next iteration, such that both the tree
T r and probability distribution ( X̂ r

n , qr
n) are updated based

on the new ( X̂ (r)
n , q(r)

n ). If no new messages are received
from a robot, then robot r continues to plan based on the
most recent distribution. If robot r is yet to receive any
messages then it may assume a default policy.

4.6. Online replanning

The best action is selected as the first action in the highest
probability action sequence in X̂ r

n (Algorithm 1, line 10).
The search tree may then be pruned by removing all chil-
dren of the root except the selected action. Planning may
then continue using the subtree’s previous results. If the
objective function changes, e.g. as a result of a new obser-
vation, then the tree should be restarted. In practice, if the
change is minor then it may be appropriate to continue plan-
ning with the current tree, and the discounting in D-UCT
will help to quickly correct the reward estimates.

4.7. Probabilistic objective functions

So far, we have assumed the objective function g is
deterministic for a given set of action sequences x. This
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is reasonable in many scenarios since, for example, it is
usually sufficient to plan based on the expectation of the
reward, which is a deterministic quantity. However, some-
times it may be necessary to directly model other sources
of uncertainty, such as the state of the environment, in addi-
tion to the uncertain plans of the robots. For these problems,
we can define the objective function as g( x, 	), where 	 is
a random variable representing other sources of uncertainty.
Our algorithm can readily be extended to this case by com-
puting all expectations with respect to both qn and 	. In
some cases these expectations could be computed exactly
(this was feasible for our Section 7 experiments), but in
general the expectations can be efficiently approximated by
sampling for 	, as in POMCP (Silver and Veness, 2010;
Patten et al., 2017). Our theoretical analysis (see Section 5)
is valid for these cases since the standard UCT algorithm
assumes the rewards obtained at leaf nodes are probabilistic
(Kocsis and Szepesvári, 2006), and the standard PC algo-
rithm is applicable if there is noise in the system (Wolpert
et al., 2006).

5. Analysis

In this section, we provide a detailed theoretical analysis
of Dec-MCTS. The algorithm is an anytime and decen-
tralized approach to multi-robot coordination with two key
algorithmic components: (1) the tree search (Section 4.3) is
designed to perform long-horizon planning for single-robot
action sequences while considering the changing plans of
the other robots; and (2) the product distribution optimiza-
tion (Section 4.4) is designed to directly optimize the joint
multi-robot plan while being restricted to a small subset
of possible action sequences. While it is difficult to make
any strong claims of global optimality in the context of
decentralized, long-horizon planning with general objective
functions, we focus our analysis on characterizing the con-
vergence properties of these two algorithmic components,
then discuss the implications of these results.

In Section 5.1 we begin by presenting and analyzing a
special type of MAB problem that is related to tree search.
Section 5.2 then presents our main analytical result that the
D-UCT algorithm (Algorithm 2) maintains an exploration–
exploitation trade-off for child selection while the distribu-
tions qr

n are changing (and converging). In Section 5.3 we
characterize the convergence of Algorithm 3 given a con-
tracted sample space of distributions X̂ r

n ⊂ X r. Finally,
in Section 5.4 we remark on the implications of these
results in the context of the overall Dec-MCTS algorithm
(Algorithm 1).

5.1. D-UCB applied to bandits

We begin our analysis by studying D-UCB (Garivier and
Moulines, 2011) for a specific type of non-stationary,
switching bandit problem. The classic MAB problem is that
of a gambler deciding which arm to play from a row of slot

machines with stationary but unknown reward distributions.
As a result, bandits are the canonical model for studying
the trade off of acquiring knowledge (“exploration”) and
maximizing reward (“exploitation”), or the exploration–
exploitation dilemma. In the context of Algorithm 2, the
“arm” is analogous to a node selected to expand for a given
MCTS rollout. We can therefore leverage the analysis of
the MAB for the tree search problem (later in Section 5.2).
To achieve this, we modify the assumptions on the type of
reward distributions for each arm to those expected at inter-
nal nodes of the tree while performing the proposed D-UCT
algorithm.

Our analysis follows that of Kocsis et al. (2006); Koc-
sis and Szepesvári (2006) who analyze the use of UCB1 as
the MCTS node selection policy. We mainly reference the
technical report by Kocsis et al. (2006) where the proofs
for their theorems are given. Specifically, in this section we
analyze D-UCB applied to a special type of bandit prob-
lem, then in Section 5.2 we exploit this analysis in applying
D-UCT to the root node of a tree.

In the remainder of this section, we first provide an upper
bound on the number of pulls of any arm that is subopti-
mal in Lemma 1. Then, Lemma 2 will bound the difference
between the optimal payoff and expected total payoff up
to some arbitrary time. Lemma 3 then gives concentration
bounds of the actual mean about this expected value. We
then give the asymptotic probability of the algorithm fail-
ing in Lemma 4. The proofs of these lemmas are provided
in Appendix A.

5.1.1. Technical preliminaries. We consider D-UCB
applied to a particular type of switching bandit problem.
Let It ∈ {1, . . . , K} denote the arm pulled at round t, with
K the number of possible arms. After selecting node It = i,
the gambler receives a stochastic payoff Xi,t ∈ [0, 1]. The
sequence of payoffs generate the stochastic process {Xi,t}t,
i = 1, . . . , K, t ≥ 1.

The D-UCB arm selection policy uses the same
bound (3) as in Section 4.3.1. Specifically, given a discount
factor γ ∈( 1/2, 1), the D-UCB algorithm chooses the arm
with the best discounted UCB

It = arg max
i∈{1,...,K}

{X̄i,t( γ )+ct,ti ( γ ) } (13)

where X̄i,t( γ ) denotes the discounted average reward (6)
and ct,ti ( γ ) is the bias sequence (7) for arm i at round t. Sim-
ilar to Section 4.3.1, ti( γ ) denotes the discounted number
of times arm i is pulled (4) and t( γ ) denotes the discounted
total number of pulls (5).

As in Kocsis and Szepesvári (2006), we allow the mean
value of the payoffs to drift as a function of time; however,
these values can also change dramatically at breakpoints.
These breakpoints are defined as epochs when a previ-
ously suboptimal arm becomes optimal. We denote by ϒt

the number of breakpoints before time t. When referring to
quantities that are not discounted (i.e. γ = 1), we remove
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the γ argument (e.g. t = t(1), X̄i,t = X̄i,t(1), etc.). Fur-
ther, the filtration F referred to in this paper is the natural
filtration.

Recall we require a number of assumptions on the reward
distributions of each arm so that our analysis for this bandit
problem can later be exploited in our analysis for D-UCT.
Our first assumption relates to the payoff sequence of each
arm.

Assumption 1. Fix 1 ≤ i ≤ K. Let {Fi,t}t be a filtration
such that {Xi,t}t is {Fi,t}-adapted and Xi,t is conditionally
independent of Fi,t+1,Fi,t+2, . . . given Fi,t−1. Further, there
exists an integer Tp such that for ti ≥ Tp and t < ti, Xi,t is
independent from Fi,t.

As mentioned, we allow the expected value for each arm
μi,t to drift over time, and change abruptly at a breakpoint.
We assume the number of breakpoints are upper bounded
as follows.

Assumption 2. The monotone sequence giving the maxi-
mum number of breakpoints up to time t {ϒt}t is known and
bounded, such that limt→∞ϒt = supt ϒt < ∞ and (by
definition) ϒt+1 ≥ ϒt.

The number of abrupt changes to μi,t are thus bounded by
supt ϒt. As the following assumption states, we also assume
that the expected payoff converges.

Assumption 3. The limit μi = limt→∞ μi,t exists for all
i ∈ {1, . . . , K}.

The difference between the expected reward at time t and
the limit is termed the drift δi,t = μi,t−μi. For any arbitrary
time t, denote the optimal arm as i∗t , and define the optimal
expected payoff by μi∗t ,t = maxi∈{1,...,K} μi,t. Thus, we obtain
the optimal expected payoff up to time t as

μ∗t =
1

t

t∑
u=1

μi∗u ,u

Finally, the minimum difference between the expected
reward for an optimal arm i∗u and expected reward for arm i
at all times is obtained as

�i,t = min
u∈{1,...,t}

{
μi∗u ,u − μi,u : i �= i∗u

}
Our last assumption is that we require an index T0( ε) above
which the drift δi,t becomes proportional to �i,t. Let Mi( t)
denote the number of pulls of arm i following the most
recent breakpoint.

Assumption 4. There exists an index T0( ε) such that, for
any arbitrary ε > 0 and Mi( t)≥ T0( ε), |δi,t| ≤ ε�i,t/2 and
|δ∗t | ≤ ε�i,t/2 for all i.

5.1.2. Theoretical analysis. Given these assumptions, we
now begin our analysis of D-UCB for this bandit problem.
First, we bound the number of times each suboptimal arm

is pulled. Denote by Pγ and Eγ the probability distribution
and expectation under the policy D-UCB using the discount
factor γ .

Let T̃i( t)=∑t
u=1 1{Iu=i�=i∗u} be the number of times arm i

was played when it was not the best arm in the first t rounds.

Lemma 1 (Number of suboptimal pulls). Consider
D-UCB applied to a non-stationary, switching bandit prob-
lem where Assumptions 1–4 are satisfied and where the
bias sequence ct,ti ( γ ) used by D-UCB is given by (7). Let
Cp > 1/

√
8 and γt = 1 − √E[ϒt]/16t. For any arm

i ∈ {1, . . . , K} and t > 1,

Eγ [T̃i( t) ] ≤ O
(√

E[ϒt]t( C2
p log t + T0( ε)+Tp)

)
(14)

The value of Cp stated is more general than the common
statement that Cp = 1/

√
2 given, for example, by Kocsis

and Szepesvári (2006) and Browne et al. (2012). We discuss
this further in Remark 3 in Appendix A.

The following lemma gives convergence of the expected
undiscounted payoff Eγ [X̄t] received up to time t towards
the optimal payoff μ∗. The proof is a simplified version of
Theorem 2 of Kocsis et al. (2006) that allows for changing
“best arms.” The proof uses the expected number of subop-
timal pulls (Lemma 1) and the definition of drift δ∗t to bound
the payoff.

Lemma 2 (Expected payoff convergence towards optimal
payoff). Let

X̄t :=
K∑

i=1

Ti( t)

t
X̄i,t

Under the assumptions of Lemma 1,

∣∣Eγ [X̄t]− μ∗
∣∣ ≤ ∣∣δ∗t ∣∣

+ O
(

K
√

E[ϒt]/t
(

C2
p log t + T0 + Tp

))
(15)

where T0 = T0( 1/2) .

From Lemma 2, we have the convergence of the expected
payoff Eγ [X̄t] about the optimal payoff; however, we are
yet to obtain results about the concentration of the actual
payoff X̄t about this quantity. To bound this concentration,
we leverage the results of Kocsis et al. (2006), which has a
non-trivial assumption related to the number of suboptimal
pulls. Use Zt to denote the indicator variable that a subop-
timal arm was pulled. As with Kocsis et al. (2006), from
Assumption 1, we have that, for t ≥ Tp, the indicator Zt

is independent of Zt+1, Zt+2, . . ., given Z1, . . . , Zt−1. Thus,
after Tp and T0, the non-stationary bandit problem becomes
equivalent to a stationary problem with high probability.
This allows us to establish the concentration of Eγ [X̄t] about
X̄t in the following lemma.

Lemma 3 (Payoff convergence towards expected payoff).
Fix an arbitrary 0 < ε ≤ 1 and let �t = 9CpE[ϒt]
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t
√

2 log ( 2/ε). Then, under the assumptions of Lemma 1,
for

t ≥ O
(

K
√

E[ϒt]t( C2
p log t + T0 + Tp)

)
the following bound holds:

P
(
t|X̄t − Eγ [X̄t]| ≥ �t

) ≤ ε (16)

Next, we are interested in the probability of the algorithm
failing. The proof relies on our assumption that the break-
point sequence is known monotone and bounded, resulting
in D-UCB becoming equivalent to UCB1 for large t.

Lemma 4 (Convergence of failure probability). Under the
assumptions of Lemma 1 it holds that

lim
t→∞Pγ ( It �= i∗t = i∗)= 0

5.2. D-UCB applied to trees

We now discuss the application of D-UCB as the node
selection policy of MCTS. The assumptions we made about
the bandit problem in the above section allows us to analyze
convergence of the actual to the optimal payoff sequence at
the root node after some transitory period.

Recall that the node selection problem at each node in
the tree is equivalent to the bandit problem, however with
different assumptions on the payoff received. From the per-
spective of node id , after selecting node Iid ,t = j, the tree
search further down the tree (e.g. Ij,t) and subsequent MCTS
rollout yield a stochastic payoff Fj,t = Ft ∈ [0, 1] that
is adapted to Fj,t (Assumption 1). As nodes are slowly
expanded in the tree search, the expected reward at any node
higher up the tree slowly drifts until all nodes are explored
in the subtree (Assumption 3).

The sequence of payoffs generate the stochastic process
{Fj,t}t, ∀j ∈ C( id) and t ≥ 1. We simplify the analysis
by assuming a constant branching factor K, i.e. C( id)=
{1, . . . , K},∀id .

Applying the above lemmas to the tree T r, we require
some extra notation. Recall that F̄id ,tid

is the empirical

mean; it follows that F̄i0,ti0
is the mean at the root node.

Further, let μ∗i0 denote the optimal expected payoff at the
root node and note that ti0 = t.

Theorem 1. Consider algorithm D-UCT running on a tree
T of depth D and branching factor K. The payoff distribu-
tions of the leaf nodes are independently distributed and
can change at breakpoints. The sequence that gives the
expected bound of breakpoints {E[ϒtj ]} follows Assump-

tion 2 and γtj = 1 −
√

E[ϒtj ]/16tj for all nodes j. Then,

when Mi0 ( t)≥ Tp and Mi0 ( t)≥ T0, the bias of the payoff at
the root node,

|F̄i0,ti0
− μ∗i0 | = O

(
KD log( t)

√
E[ϒt]/t

)
(17)

Further, the probability of failure at the root node becomes
zero as t grows large.

Proof. The proof is done by induction on D.
First, for D = 1, running the D-UCB algorithm as

the node selection policy is equivalent to running D-UCB
on a bandit problem. Thus, the payoffs Fi0,t are indepen-
dent and identically distributed (Tp = 0) and, comparing
Lemma 1 with Theorem 1 of Garivier and Moulines (2011),
we deduce that T0 = 0. The expected bias thus follows from
Lemma 2, and the concentration of the actual payoff about
the expected value follows from Lemma 3. By Assump-
tion 2, the asymptotic probability of failure follows from
Lemma 4.

Now, consider a tree of depth D and assume the state-
ment holds up to a tree of depth D − 1. First, note that,
due to our assumptions, Lemmas 1–4 hold for any inter-
nal node of the tree. Regarding Assumption 1, before Tp,
the payoffs Fi0,t are not independently distributed. Instead,
since D-UCB node selection is also used further down the
tree (d > 0), the payoff is {Fi0,t}-adapted. However, there
is a point Tp where the payoffs become independent as the
tree search problem becomes equivalent to a MAB problem.
When Mi0 ( t)≥ Tp and Mi0 ( t)≥ T0, it follows by Lemma 2
that the bias at the root converges at the rate of

|F̄i0,ti0
− μ∗| = |δ∗ti1 | + O

(
K log( t)

√
E[ϒt]/t

)
(18)

where δ∗ti1 is the rate of convergence of the bias for the best

move. By the induction hypothesis

|δ∗ti1 | = O
(

K( D− 1) log( t)
√

E[ϒt]/t
)

, i1 = 1, . . . , K

Substituting this result into (18) gives (17). By Assump-
tion 2, the expected number of breakpoints limt→∞ E[ϒt] is
bounded, and hence by Lemma 4 the probability of failure
becomes zero.

Remark 1. The results presented here are mainly con-
cerned with the convergence of the bias after some tran-
sitory period. For the standard UCT case, Kocsis et al.
(2006) assumed the Tp term was 0 and suggested T0 =
O( KD). However, it was recently shown that this transitory
period using the UCT algorithm on a binary tree (K = 2)
of depth D can be �(exp(exp( . . . exp( 1) . . . ) ) ) (D − 1
nested exponentials) in a worst-case instance (Coquelin and
Munos, 2007). Gelly et al. (2012) suggested instead that
the UCT (and, thus, D-UCT) strategy will be most success-
ful when the leaves of large subtrees share similar rewards,
i.e. a “smoothness” assumption on the reward distributions.
Active perception scenarios typically exhibit some degree
of “smoothness,” such that similar sequences of actions
yield similar rewards and thus there is a correlation amongst
subtree leaves.

Remark 2. Assumption 2 states several conditions for the
breakpoint sequence {E[ϒt]}t. We can ensure these assump-
tions are satisfied by selecting appropriate values for the
sample period τn (used in Section 4.4). Here, we provide a
concrete example definition for τn. Recall that n is the num-
ber of times X̂n is changed and τn is the number of calls to
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Algorithm 2 with sample space X̂n. Let c > 0 denote the
fixed number of iterations in Algorithm 2 (line 2). For this
example, we let τn = 1/�at−2� and, therefore, n = �a( 1 −
t−1) � where a > c. Therefore, the expected upper bound on
breakpoints E[ϒt] = n/c and, thus, limt→∞ E[ϒt] = a/c.
This ensures Lemma 4 holds and the bias at the root node
(17) is

|F̄i0,ti0
− μ∗i0 | = O

(
KD log( t) /

√
t
)

Therefore, D-UCT achieves a polynomial convergence rate,
even in problems where the reward distributions are chang-
ing abruptly, such as in Dec-MCTS.

5.3. Variational methods by importance
sampling

We now consider the effect of contracting the sample space
X̂n ⊂ X on the convergence of Algorithm 3. Recall that the
pq KL divergence is the divergence from a product distri-
bution qn to the optimal joint distribution pn. We then have
the following proposition.

Proposition 1. Algorithm 3 asymptotically converges to a
distribution that locally minimizes the pq KL divergence,
given an appropriate subset X̂n ⊂ X .

We justify Proposition 1 as follows. Consider the situa-
tion where, at each iteration n, we randomly choose a subset
X̂ r

n ⊂ X r for each robot. This approach is equivalent to
Monte Carlo sampling of the expected utility and thus the
biased estimator is consistent (asymptotically converges to
E[ f r]). For tractable computation and faster convergence,
in our algorithm we modify the random selection by choos-
ing a sparse set of strategies X̂n with the highest expected
utility (Section 4.4). Although this does not ensure we sam-
ple the entire domain X asymptotically, in practice qn( X̂n)
is a reasonably accurate representation of qn(X ), and there-
fore this gives us an approximation to importance sam-
pling (Wolpert et al., 2006). Variants of Algorithm 3 have
been shown to converge to a distribution that locally mini-
mizes the pq KL divergence under reasonable assumptions,
such as an appropriate cooling schedule for β (Wolpert and
Bieniawski, 2004).

5.4. Analysis of Dec-MCTS

The analyses above show separately that the tree search
of Algorithm 2 balances exploration and exploitation and
that, under reasonable assumptions, Algorithm 3 converges
to the product distribution that best optimizes the joint
action sequence. These results provide strong motivation
for the use of these components in the algorithm. How-
ever, they do not immediately yield a characterization of
optimality for Algorithm 1. To prove convergence rates
and global optimality, we would need to characterize the
co-dependence between the evolution of the reward distri-
butions Eqn [ f r | xr] used when sampling the tree and the

Fig. 2. The generalized team orienteering problem. The eight
robots (colored paths) aim to collectively visit a maximal num-
ber of goal regions (green circles, weighted by importance). The
robots follow Dubins paths, are constrained by distance budgets
and must avoid obstacles (black).

contraction of the sample space X̂n used for optimizing qn.
This co-dependence is complex due to the cyclic nature of
the algorithm and communication of information between
robots, and thus it is unlikely that any strong claims for
global optimality can be made. However, this is generally
not achievable in the context of decentralized, long-horizon
planning with general objective functions, as addressed in
this paper. Despite this, the following experiments show that
the Dec-MCTS algorithm converges rapidly to high-quality
solutions in multi-robot active perception scenarios.

6. Experiments: Generalized team
orienteering

In this section, we evaluate the performance of our algo-
rithm in an abstract multi-robot information gathering prob-
lem. An illustration of the problem and an example solution
is shown in Figure 2. We empirically show convergence,
robustness to intermittent communication and a comparison
to a centralized variant of MCTS.

6.1. Problem statement

The problem is motivated by tasks where a team of Dubins
robots maximally observes a set of features of interest in an
environment, given a travel budget (Best et al., 2018). Each
feature can be viewed from multiple viewpoints and each
viewpoint may be within observation range of multiple fea-
tures. This formulation generalizes the orienteering prob-
lem (Vansteenwegen et al., 2011; Gunawan et al., 2016) by
combining the set structure of the generalized TSP (Noon
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and Bean, 1989) with the budget constraints of the ori-
enteering problem with neighborhoods (Faigl et al., 2016)
extended for multi-agent scenarios (Best et al., 2018).

Robots navigate within a graph representation of an envi-
ronment with vertices vi ∈ V , edges eij := 〈vi, vj〉 ∈ E
and edge traversal costs cij. Each vertex vi represents a
location and orientation ( x, y, θ ) within a square workspace
with randomly placed obstacles. The action sequences of
each robot are defined as paths through the graph beginning
at a start vertex unique to each robot. The edge costs are
defined as the distance length of the Dubins path between
the two configurations. All edges are connected within a
fixed distance.

For the objective function, we have a collection of sets
S =( S1, S2, . . . ), where each Sk ⊆ V . These sets may repre-
sent a set of features of interest, where a vertex is an element
of a set only if the associated feature can be observed from
the vertex location. We assume each set is a disk, how-
ever the formulation could extend to more complex models
(Best et al., 2018). The vertices vj ∈ V are randomly placed
within the sets. A set Sk is visited if ∃vj ∈ x, vj ∈ Sk and
each visited set yields an associated reward wk . There is
no additional reward for revisiting a set. The objective is
defined as the sum of the rewards of all visited sets.

6.2. Calculating expectations

The Dec-MCTS algorithm requires computing several
expectations that, in general, should be approximated using
sampling. However, for this problem definition it is pos-
sible to exploit the structure of the objective function to
efficiently compute exact expectations. We compute expec-
tations in a similar way to (3) by Best and Fitch (2016):

Eqn [g] =
∑
Sk∈S

wk × Pqn ( ∃vj ∈ x, vj ∈ Sk)

=
∑
Sk∈S

wk

⎛
⎝1−

∏
vj∈Sk

∏
xr∈X̂n

(
1− qr

n( xr) 1{vj∈xr}
)⎞⎠

where Pqn ( ∃vj ∈ x, vj ∈ Sk) is the probability that at least
one vj ∈ Sk is visited by at least one robot. This can be
computed much more efficiently than the general equation
(linear rather than exponential time in the number of robots)
since it only requires iterating over the possible paths for
individual robots (xr ∈ X̂ r

n ,∀r) rather than iterating over all
joint paths (x ∈ X̂n).

6.3. Experiment setup

We compare our algorithm (Dec-MCTS) with centralized
MCTS (Cen-MCTS), which consists of a single tree where
robot r’s actions appear at tree depths ( r, r+R, r+2R, . . . ).
Intermittent communication is modeled by randomly drop-
ping messages. Messages are broadcast by each robot at 4
Hz and a message has a probability of being received by
each individual robot.

Experiments were performed with eight simulated robots
running in separate Robot Operating System (ROS) nodes
on a quad-core computer with hyperthreading (eight virtual
cores). Each random problem instance (Figure 2) consisted
of 200 disks with rewards between 1 and 10, 5 obstacles,
4000 graph vertices, and random start vertices for each
robot. Each iteration of Algorithm 1 performs 10 MCTS
rollouts and 1 communication broadcast. The set X̂ r

n con-
sists of 10 paths that are resampled every 10 iterations. The
MCTS rollout policy recursively selects the next edge that
does not exceed the travel budget and maximizes the ratio
of the increase of the weighted set cover to the edge cost.

6.4. Results

The first experiments (Figure 3(a)) show that Dec-MCTS
outperforms Cen-MCTS despite the increased difficulty of
planning in a decentralized setting. Dec-MCTS achieved
a median 7 % reward improvement over Cen-MCTS after
120 s, and a higher reward in 91 % of the environments.
Dec-MCTS typically converged after ∼60 s. A paired
single-tailed t-test supports the hypothesis (p < 0.01) that
Dec-MCTS achieves a higher reward than Cen-MCTS for
time >7 s. Cen-MCTS performs well initially since it per-
forms a centralized greedy rollout that finds reasonable
solutions quickly. Dec-MCTS soon reaches deeper levels
of the search trees, though, which allows it to outperform
Cen-MCTS. This is because Dec-MCTS uses a collec-
tion of search trees with smaller branching factors than
Cen-MCTS, but still successfully optimizes over the joint
space. We note that in this implementation Dec-MCTS
is performing parallel computation while Cen-MCTS is
mostly sequential. While it is difficult to measure the dif-
ference in computation resources used (due to the use of
virtual cores, less than 100% processor utilization, and
overheads of using ROS message passing), the results indi-
cate that Dec-MCTS would outperform Cen-MCTS after
adjusting for this difference in computation resources.

The second experiments analyzed the effect of commu-
nication degradation. When the robots did not communi-
cate, the algorithm achieved a median 31 % worse than
Cen-MCTS, but with full communication achieved 7 % bet-
ter than centralized, which shows the robots can success-
fully cooperate by exploiting the communication channel.
Figure 3(b) shows the results for partial communication
degradation. When half of the packets are lost, there is
no significant degradation of performance. When 97 %
of packets are lost the performance is degraded but the
algorithm still performs significantly better than with no
communication. These results demonstrate the algorithm is
robust to unpredictable communication loss.

7. Experiments: Active object recognition

This section describes experiments for online active object
recognition, using point cloud data collected from an
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Fig. 3. (a) Comparison of Dec-MCTS with varying computation time to Cen-MCTS (120 s). (b) Performance of Dec-MCTS with
intermittent communication (60 s computation time). Vertical axes in (a) and (b) show percentage additional reward achieved by Dec-
MCTS compared with Cen-MCTS. Error bars show 0, 25, 50, 75, and 100 percentiles (excluding outliers) of 100 random problem
instances.

outdoor mobile robot in an urban scene (Figure 4). We
first outline the problem and experiment setup, and then
present results that analyze the value of online replanning
and compare Dec-MCTS to a greedy planner.

7.1. Problem setup

A team of robots aim to determine the identity of a set of
static objects in an unknown environment. Each robot asyn-
chronously executes the following cycle: (1) plan a path that
is expected to improve the perception quality; (2) execute
the first planned action; (3) make a point cloud observa-
tion using onboard sensors; and then (4) update the belief
of the object identities and their poses. Each robot asyn-
chronously performs this cycle until their travel budget is
exhausted. The robots have the same Dubins motion model
as in Section 6. Each graph edge has an additional constant
cost that represents the time required to process an observa-
tion and perform replanning. Thus, each robot’s budget is a
constraint on the sum of its travel distance and processing
time.

We use a perception model for object recognition simi-
lar to that proposed in Chapter 7.2 of Patten (2017). The
robots maintain a belief of the identity of each observed
object, represented as the probability that each object is an
instance of a particular object from a given database. The
aim is to improve this belief, which is achieved by maxi-
mizing the mutual information objective proposed by Patten
et al. (2015). The posterior probability distribution for each
object after a set of observations is computed recursively
using Bayes’ rule. The observation likelihood is calculated
by measuring the similarity between the shape of the point
cloud with each model instance in the database. Similar-
ity is computed by first aligning the point clouds of a pair
of objects using the iterative closest point (ICP) algorithm
(Besl and McKay, 1992) and then calculating the symmetric

residual error (Douillard et al., 2012). Objects may merge
or split after each observation if the segmentation changes.
Observations are fused using decentralized data fusion or
a central processor and shared between all robots, and
thus all robots are assumed to have the same belief of the
environment. While planning, the value of future observa-
tions are estimated by simulating observations of objects
in the database for all possible object identities, weighted
by the belief probabilities, and using maximum likelihood
estimates for poses.

7.2. Experiment setup

The experiments use a point cloud dataset (Patten et al.,
2015) of Velodyne scans of outdoor objects in a 30×30 m2

park shown in Figure 4(a). The environment consisted
of 13 objects from 7 different model types as shown in
Figure 4(b)–(h). The dataset consists of single scans from
50 locations and each scan was split into 8 overlapping
observations with different orientations. Each observation
had a 180° field of view and 8 m range. These locations
and orientations form the roadmap vertices with associ-
ated observations. Each object was analyzed from separate
data to generate the model database. The robots are given a
long-range observation from the start location to create an
initial belief of most object locations. The team consists of
three robots, who share a fixed start location with different
orientations.

The experiments simulate an online mission where each
robot asynchronously alternates between planning and per-
ceiving. Three planners were trialled: our Dec-MCTS algo-
rithm with 120 s replanning after each action, Dec-MCTS
without replanning, and a decentralized greedy planner that
selects the next action that maximizes the mutual infor-
mation divided by the edge cost. The recognition score of
an executed path was calculated as the belief probability
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Fig. 4. Experiment setup for the point cloud dataset: (a) environment with labeled locations, (b) picnic table (PT), (c) barbecue (BQ),
(d) wheelie bin (WB), (e) motorbike (MB), (f) street light (ST), (g) tree (TR), and (h) palm tree (PT).

(a) (b)

Fig. 5. (a) Task performance over mission duration for 10 trials (maximum possible score is 0.62). (b) Overlay of two example missions
with three robots. Blue paths denote online Dec-MCTS (score 0.53). Orange paths denote greedy policy (score 0.42). Objects are green
point clouds where shading indicates height. Robots observe at black dots in direction of travel. Start location top right.

that each object matched the ground-truth object type, aver-
aged over all objects. The planners cannot directly optimize
the paths with respect to the recognition score since the
ground truth is not known in advance; however, planning
with respect to the mutual information objective function is
intended to indirectly optimize the recognition score.

7.3. Results

Overall, the results validate the coordination performance
of Dec-MCTS. Figure 5(a) shows the recognition score
(task performance) over the duration of the mission for
10 trials with 3 robots. The maximum possible recogni-
tion score subject to the perception algorithm and dataset
was 0.62, which was achieved by visiting every location
in the dataset. Dec-MCTS outperformed greedy halfway

through the missions since some early greedy decisions and
poor coordination reduced the possibility of making sub-
sequent valuable observations. By the end of the missions
some greedy plans successfully made valuable observa-
tions, but less often than Dec-MCTS. The no-replanning
scenario achieved a similar score as the online planner in the
first half, showing that the initial plans are robust to changes
in the belief. For the second half, replanning improved the
recognition score since the belief had changed considerably
since the start. This shows that while the generated plans
are reasonable for many steps into the future, there is also
value in replanning as new information becomes available.

Figure 5(b) shows two example missions using online
Dec-MCTS (blue) and greedy (orange) planners, and their
score over the mission duration. Greedy stayed closer to the
start location to improve the recognition of nearby objects,
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and consequently observed objects on the left less often;
reaching this part of the environment would require making
high-cost/low-immediate-value actions. On the other hand,
Dec-MCTS achieved a higher score since the longer plan-
ning horizon enabled finding the high value observations on
the left, and was better able to coordinate to jointly observe
most of the environment.

8. Conclusion and future work

We have presented a new algorithm for decentralized coor-
dination that is suitable for a general class of problems.
Our results demonstrate that the performance (i.e. solu-
tion quality) of our approach is as good as or better than
its centralized counterpart in real-world applications, and
that it effectively optimizes over sequences in the joint-
action space even with intermittent communication. A key
conceptual feature of our approach is its generality in repre-
senting joint action sequences probabilistically rather than
deterministically. Dec-MCTS has the ability to efficiently
plan over long planning horizons, computes anytime solu-
tions, allows incorporating prior knowledge, and provides
convergence rate guarantees.

The problem formulation considered in this paper is
general in that we are interested in planning sequences
of actions to optimize a joint objective function, without
requiring assumptions such as submodularity. A straight-
forward extension to our approach would be to adapt the
algorithm to address the Dec-POMDP formulation. This
could be achieved by generalizing the MCTS component of
our algorithm to POMCP (Silver and Veness, 2010) while
still using our proposed D-UCT tree expansion policy. A
difficulty would be to efficiently find good-quality solu-
tions while also considering probabilistic transition mod-
els and having the search tree branch for both actions and
observations.

Our experiments demonstrate that Dec-MCTS achieves
reasonable performance even when the communication
becomes less reliable. While these results show a robust-
ness to communication loss, they also indicate that some
of the communication messages are not entirely necessary.
An interesting avenue for future work would be to develop
a communication-planning algorithm that selects when to
communicate and who to communicate to while running
Dec-MCTS in scenarios with limited communication band-
width. A possible approach could be a dynamic program-
ming formulation for planning communication to main-
tain coordination in a similar way to how Ondruska et al.
(2015) planned the use of navigation hardware to maintain
localization accuracy. Other communication-planning for-
mulations that may be useful here include those of Kassir
et al. (2015) and Lindhé and Johansson (2013). A key dif-
ficulty is to develop a measure of information value of a
communication message in the context of improving plan-
ning performance. Along this line of inquiry, Cliff et al.
(2017) introduced measures for quantifying the dynamics

of inter-agent dependencies in a team that is optimizing a
collective goal. We have begun exploring these ideas for
communication planning in Best et al. (2018).

Another interesting line of inquiry is to incorporate coali-
tion forming into our approach. As formulated, static coali-
tions of agents can be formed by generalizing the product
distributions in our framework to be partial joint distri-
butions. The product distribution described in Section 4.4
would be defined over groups of robots rather than indi-
viduals. Each group acts jointly, with a single distribution
modeling the joint actions of its members, and coordination
between groups is conducted as in our algorithm. Just as our
approach corresponds to mean-field methods, this approach
maps nicely to generalized mean field inference (Xing et al.,
2004) or region-based variational methods (Yedidia et al.,
2005), and guarantees from these approaches may be appli-
cable. It would also be interesting to study dynamic coali-
tion forming, where the mapping between agents and robots
is allowed to change, and to develop convergence guaran-
tees for this case. A key challenge would be to determine
which robots’ plans are more tightly coupled and, therefore,
would benefit from planning within a coalition.

It would be interesting to apply the same general
framework to multi-agent scenarios where standard algo-
rithms already exist for associated single-agent scenarios.
Problem-specific single-agent planning algorithms could
replace the MCTS component of Dec-MCTS, while still
performing the distributed product distribution optimiza-
tion phase, in order to provide stronger theoretical guaran-
tees or algorithmic efficiency for special cases. Scenarios
where this could be applicable include multi-robot mission
monitoring (Best et al., 2017), persistent monitoring (Alam-
dari et al., 2014), cooperative wildlife localization (Cliff
et al., 2015), TSP variants (Best et al., 2018), collision
avoidance (Otte and Correll, 2013), and dynamic cover-
age problems (Hönig and Ayanian, 2016). It would also
be worth investigating other MCTS variants, e.g. BRUE
(Feldman and Domshlak, 2014), as an alternative to UCT.
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Appendix A: Proofs

A.1. Proof of Lemma 1

Proof. We follow the proof of Theorem 1 of Garivier and
Moulines (2011), with minor modifications to account for
the transitory periods T0, Tp discussed in Theorem 2 of Koc-
sis et al. (2006). Note that in order to simplify notation, we
substitute temporal functions (e.g. ui( γ ) for ti( γ )) when the
index u is used instead of t.

Fix the index i of a suboptimal arm. Let

A0( t, ε, γ )= min{ti( γ ) | ct,ti ( γ )≤( 1− ε) �i,t/2}
Thus, by the definition of ct,ti ( γ ),

A0( t, ε, γ )= 16C2
p log t( γ )

( 1− ε)2 �2
i,t

We let A( t, ε, γ )= max( A0( t, ε, γ ) , T0( ε) , Tp) . Then the
number of times a suboptimal arm i is played is

T̃i( t)= 1+
t∑

u=K+1

1{u:(Iu=i�=i∗u)∧(ui(γ )<A(u,ε,γ ))}

+
t∑

u=K+1

1{u:(Iu=i�=i∗u)∧(ui(γ )≥A(u,ε,γ ))}

Further, let

D( γ )=
log

(
( 1− γ ) C2

p log (K( γ ) )
)

log( γ )

From Garivier and Moulines (2011), we have

T̃i( t)≤ 1+ �( 1− γ ) t�A( t, ε, γ ) γ−1/(1−γ )

+ ϒtD( γ )+
t∑

u=K+1

1{u:(Iu=i�=i∗u)∧(ui(γ )≥A(u,ε,γ ))} (19)

for any positive A( t, ε, γ ) and D( γ ). As in Garivier and
Moulines (2011), there are three conditions under which
a suboptimal arm will be played when ti( γ )≥ A( t, ε, γ )
(following a breakpoint):

{t :( It = i �= i∗t )∧( ti( γ )≥ A( t, ε, γ ) ) }

⊆

⎧⎪⎨
⎪⎩
{t :( μ∗t − μi,t < 2ct,ti ( γ ) )∧( ti( γ )≥ A( t, ε, γ ) ) }
∪{t : X̄ ∗t ( γ )≤ μ∗t − ct,ti∗ ( γ ) }
∪{t : X̄i,t( γ )≥ μi,t + ct,ti ( γ ) }
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We start with the first case, following the logic of Theo-
rem 2 in Kocsis et al. (2006). Since ct,ti ( γ ) decreases in ti
and ti( γ )≥ A( t, ε, γ )≥ A0( t, ε, γ ), we have that ct,ti ( γ )≤
ct,A0(t,ε,γ )( γ ) and, thus, for the choice of A0( t, ε, γ ),

ct,ti ( γ )≤ 2
√

C2
p log t( γ ) /A0( t, ε, γ ) ≤ �i,t/2

Thus, the first case can not occur when ti( γ )≥ A0( t, ε, γ ).
Now, when ti( γ )≥ T0( ε), we have that |δi,t| ≤ ε�i,t/2.
Since μ∗ − μi ≥ �i,t, t = 1, 2, . . ., we have

μ∗t − μi,t − 2ct,ti ( γ ) ≥ �i,t − |δ∗t | − δi,t − 2ct,ti ( γ )

≥ �i,t − ε�i,t−( 1− ε) �i,t

= 0

Thus, the set is empty (i.e. event ( μ∗t − μi,t <

2ct,ti ( γ ) )∧( ti( γ )≥ A( t, ε, γ ) ) never occurs).
We now examine the probability of the second and third

cases occurring. Recall that Mi( t) denotes the number of
pulls of arm i after the most recent breakpoint. Then, under
Assumption 1, when Mi( t)≥ Tp ≤ A( t, ε, γ ) we can exploit
Theorem 18 of Garivier and Moulines (2011) to complete
the proof. The probability of poorly estimating the mean
payoffs is now upper bounded as (Garivier and Moulines,
2011)

Pγ

(
X̄i,t( γ )≥ μi,t + ct,ti ( γ )

)
≤( 1− γ )−1−K +

⌈
log 1

1−γ

log( 1+ η)

⌉
( 1− γ ) t

1− γ 1/(1−γ )

for all positive η. Substituting this result into (19) and tak-
ing expectations of both sides gives (Garivier and Moulines,
2011)

Eγ [T̃i( t) ] ≤ C1( 1− γ ) t + C2
E[ϒt]

1− γ
log

1

1− γ
(20)

where

C1 =
32
√

2C2
p log 1

1−γ

( 1− ε)2 �2
i,tγ

1/(1−γ )
+ T0( ε)

2
√

2

+ 4

( 1− 1
e ) log

(
1+ 4

√
1− 1/2C2

p

)
and

C2 = γ − 1

log( 1− γ ) log γ
× log ( 1− γ ) C2

p log K( γ )

When γ goes to 1, C2 → 1 and

C1 →
16eC2

p log 1
1−γ

( 1− ε)2 �2
i,t

+ T0( ε)+Tp

+ 2

( 1− 1
e ) log

(
1+ 4

√
1− 1/2C2

p

)

Finally, we can minimize the expected number of times a
suboptimal action is taken by setting the discount factor to
γt = 1 − √E[ϒt]/16t. Selecting this discount factor gives

Eγ [T̃i( t) ] = O
(√

E[ϒt]t( C2
p log t + T0( ε)+Tp)

)
and thus

we obtain the bound (14) for t > 1.

Remark 3. A common misconception is that the parameter
Cp should be set to 1/

√
2 in order to satisfy the Chernoff–

Hoeffding bound (Kocsis and Szepesvári, 2006; Browne
et al., 2012). However, in the analysis by Auer et al. (2002)
and Kocsis et al. (2006), setting Cp to 1/

√
2 simply allows

the tail inequality to be bounded by t−4 and, thus, converge
(Auer et al., 2002). Alternatively, we can select any positive
Cp to ensure that the tail inequality is bounded by a negative
exponent on t. As a result, we leave the value Cp > 1/

√
8.

A.2. Proof of Lemma 2

Proof. The proof is a slightly generalized version of Theo-
rem 3 of Kocsis et al. (2006) to allow for switching optimal
arms.

Without loss of generality we assume that there is
a unique “best arm” at any given time t. We denote
the index of this arm by i∗t . By the triangle inequality,∣∣μ∗ − Eγ [X̄t]

∣∣ ≤ ∣∣μ∗ − μ∗t
∣∣ + ∣∣μ∗t − Eγ [X̄t]

∣∣ = ∣∣δ∗t ∣∣ +∣∣μ̄∗t − Eγ [X̄t]
∣∣. We bound the last term as follows:

t
∣∣μ∗t − Eγ [X̄t]

∣∣ =
∣∣∣∣∣

t∑
u=1

Eγ [X ∗u ]− Eγ

[
K∑

i=1

Ti( t) X̄i,t

]∣∣∣∣∣
=
∣∣∣∣∣

t∑
u=1

Eγ [X ∗u ]− Eγ

[
T∗( t) X̄ ∗t

]∣∣∣∣∣
+ Eγ

[
K∑

i=1

T̃i( t) X̄i,t

]

since 0 ≤ X̄i,t ≤ 1, the last term is bounded by
O( K
√

E[ϒt]/t( C2
p log t + T0 + Tp) ). Again, since Xi,t ≤

1, we can deduce that Eγ

[
T∗( t) X̄ ∗t

] ≤ Eγ [T∗( t) ] ≤∑t
u=1 Eγ [X ∗u ] ≤ t and upper bound the first term by

Eγ [t − T∗( t) ] =
K∑

i=1

Eγ

[
T̃i( t)

]
= O( K

√
E[ϒt]/t( C2

p log t + T0 + Tp) )

Collecting terms yields the bound in (15).

A.3. Proof of Lemma 3

Proof. We modify the proof of Theorem 5 of Kocsis et al.
(2006) slightly by using Lemma 5 in Appendix B to account
for the bound on E[T̃i( t) ].

Using the same notation as Kocsis et al. (2006), Zt is
the indicator variable that a suboptimal arm was pulled at
time t. It is important to note that this result follows by
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letting ti ≥ Tp, i.e. we are concerned with the process
{Zt}t≥Tp . At this stage, Zt is independent of Zt+1, . . . , Zt,
given Z1, . . . , Zt−1 and, thus, Lemma 11 of Kocsis et al.
(2006) holds. Then, following Theorem 5 of Kocsis et al.
(2006), it will suffice to prove that there exists a t such that
at ≤( 2/9) �t and Rt ≤( 4/9) �t.

By Lemma 1, E[
∑t

u=1 Zu] ≤ O( K
√

E[ϒt]/t( log t+T0+
Tp) ), hence at, Rt = O( K

√
E[ϒt]/t( log t+T0+Tp) ). Thus,

since �t = O( E[ϒt]t) and at, Rt = O(
√

E[ϒt]t log t), the
index t exists.

A.4. Proof of Lemma 4

Proof. Since limt→∞ϒt = supt ϒt < ∞ and limt→∞ γt =
1, for large t without loss of generality we have a unique
“best arm” i∗ = i∗t and the algorithm becomes UCB1
applied to a non-stationary bandit problem. Theorems 4
and 6 of Kocsis et al. (2006) yields the result.

Appendix B: Technical results

Lemma 5. Let Zi,Fi, ai be as in Lemma 13 of Kocsis et al.
(2006). Let {Xi} be an independent and identically dis-
tributed sequence with mean μ, and {Yi} an Fi-adapted
process. We assume that both Xi and Yi lie in the [0, 1]
interval. Consider the partial sums

St =
t∑

u=1

( 1− Zu) Xu + ZuYu

Fix an arbitrary 0 < ε ≤ 1, let �t = 9E[ϒt]t
√

2 log( 2/ε)
and let

Rt = E

[∑
u

Xu

]
− E[St]

Then for t such that at ≤( 2/9) �t and |Rt| ≤( 4/9) �t,

P( |St − E[St]| ≥ �t)≤ ε (21)

Proof. The proof follows Lemma 14 of Kocsis et al. (2006).
We show that P( St − E[St] ≥ �t)≤ ε as P( St − E[St] ≤

�t)≤ ε is proved analogously. Let p = P( St ≥ E[St]+�t) .
We have St =

∑t
u=1 Xu +

∑t
u=1 Zu( Yu − Xu)≤∑t

u=1 Xu +
2
∑t

u=1 Zu. Therefore,

p ≤ P

(
t∑

u=1

Xu + 2
t∑

u=1

Zu ≥ E

[
t∑

u=1

Xu

]
− Rt + �t

)

Using the inequality I( A + B ≥ �)≤ I( A ≥ α�)+I( B ≥
( 1−α) �) that holds for any A, B ≥ 0, 0 ≤ α ≤ 1 we obtain

p ≤ P

(
t∑

u=1

Xu ≥ E

[
t∑

u=1

Xu

]
+( 1/9) �t

)

+ P

(
2

t∑
u=1

Zu ≥( 8/9) � − Rt

)

Using the Hoeffding–Azuma inequality, the first term can
be bounded by

P

(
t∑

u=1

Xu ≥ E

[
t∑

u=1

Xu

]
+( 1/9) �tt

)

≤ exp

(
−2( �t/9)2

t

)
=( ε/2)4t

≤ ε/2

for n ≥ 1 and 0 < ε < 1. Since by assumption |Rt| ≤
( 4/9) �, the second term can be upper bounded by

P

(
2

t∑
u=1

Zu ≥( 4/9) �t

)
= P

(
t∑

u=1

Zu ≥( 2/9) �t

)

By Lemma 13 of Kocsis et al. (2006), this term is bounded
by ( ε/2)n≤ ε/2 for t ≥ 1 and 0 < ε < 1. Collecting terms
yields the first inequality (21).


