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Abstract. We present several novel methods quantifying dynamic interactions
in simulated football games. These interactions are captured in directed networks
that represent significant coupled dynamics, detected information-theoretically.
The model-free approach measures information dynamics of both pair-wise play-
ers’ interactions as well as local tactical contests produced during RoboCup 2D
Simulation League games. This analysis involves computation of information
transfer and storage, relating the information transfer to responsiveness of the
players and the team, and the information storage within the team to the team’s
rigidity and lack of tactical flexibility. The resultant directed networks (interac-
tion diagrams) and the measures of responsiveness and rigidity reveal implicit
interactions, across teams, that may be delayed and/or long-ranged. The analy-
sis was verified with a number of experiments, identifying the zones of the most
intense competition and the extent of interactions.

1 Introduction

Many team games, real and virtual, are characterised by rich interactions occurring
dynamically and shaping the course of the contest both locally and globally. The inter-
actions across the teams are created by opposing objectives of competing players and
tactical schemes. The interactions within a team are usually constrained by cooperation
and shared plans. Generally, the interactions are directed (e.g., a defender is marking
an opponent’s forward), varying in strength over time and/or space, and typically do
not result from direct messaging or communications — rather they manifest some tacit
correlations that often are delayed in time and/or are long-ranged over the play-field.

While a significant number of patterns emerging during a game may be evident even
without an in-depth analysis, most of the interactions may appear intractable to an ex-
ternal observer who does not have an access to the logic and neural processing of the
players. One then may formulate a general problem: how can an external observer iden-
tify most generic interaction networks that link together autonomous players, without
re-constructing the players’ behaviour and using only the positional data, such as pla-
nar coordinates and their changes? The problem is difficult as some of the dependencies
between players are not discernible simply by correlating their dynamic locations over
time — one needs to take into the account a possibly directed nature of such correla-
tions, where dynamics of one of the players affects the positioning of another.

In general, as mentioned by Vilar et al. [1], “quantitative analysis is increasingly
being used in team sports to better understand performance in these stylized, delineated,
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complex social systems”. One of the older examples is “sabermetrics” — the specialised
analysis of baseball through objective evidence, e.g. baseball statistics measuring in-
game activity [2]. Another recent example is described by Fewell et al. [3] who analysed
basketball games as networks, where players are represented as nodes and passes as
edges: the resulting network captures ball movement, at different stages of the game.
Their work studies network properties (degree centrality, clustering, entropy and flow
centrality) across teams and positions, and attempts to determine whether differences in
team offensive strategy can be assessed by their network properties. Strategic networks
analysed by Fewell et al. consider only explicit interactions (such as passes) within a
team, and not implicit (delayed and/or long-ranged) interactions, across teams.

Another very recent investigation by Vilar et al. [1] proposed a novel method of anal-
ysis that captures how teams occupy sub-areas of the field as the ball changes location.
This study was important in focussing on the local dynamics of team collective behav-
ior rather than individual player capabilities: when applied to football (soccer) matches,
the method suggested that players’ numerical dominance in some local sub-areas is a
key to “defensive stability” and “offensive opportunity”. While the method rigorously
used an information-theoretic approach (e.g. the uncertainty of the team numerical ad-
vantage across sub-areas was determined using Shannon’s entropy), it was not aimed at
and did not produce interaction networks, either explicit or implicit.

Construction of interaction networks for (possibly competing) teams is not unique
to sport, but arguably its utility can be leveraged quite strongly in team games, such as
football, basketball and so on. RoboCup 2D Soccer Simulation League is a well-known
benchmark domain for Artificial Intelligence that specifically targets soccer with its
realistic and challenging multi-agent dynamics, characterised by autonomous decision-
making under constraints, set by tactical plans and teamwork (collaboration) as well as
opponent (competition) [4,5,6,7,8,9,10,11], and so we use this domain in our study.

Information dynamics is a recent methodology for analysis of complex systems in
general and swarm behavior in particular. In this paper we describe a novel application
of information dynamics to the RoboCup 2D Simulation. In particular, we develop an
approach to build several interaction diagrams, given data from a number of games,
followed by a tactical analysis. The interaction diagrams reveal a few interesting de-
pendencies between pairs of players that are useful for game analysis, while the tactical
analysis extends these findings to formation-level interactions (e.g., between defensive
line-up of team Y with the attacking line-up of team X , etc.).

2 Motivation and Approach

2.1 Information Dynamics

A recently developed framework of information dynamics studies the phenomenon of
computation in a systematic way: it uncovers and analyses information-theoretic roots
of the most basic computational primitives: storage, transmission, and modification of
information [12,13,14,15].

The active information storage quantifies the information storage component that
is directly in use in the computation of the next state of a process [15]. More pre-
cisely, it is the average mutual information between the semi-infinite past of the process
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storage (or pointwise mutual information) is then a measure of the amount of informa-
tion storage in use by the process at a particular time-step n+ 1:
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. (1)

In practice, one deals with finite-k estimates aX(n + 1, k), as well as the finite-k esti-
mates AX(k) of the average active information storage AX = 〈aX(n+ 1)〉n.

Transfer entropy [16] is designed to detect asymmetry in the interaction of subsys-
tems by distinguishing between “driving” and “responding” elements. The local infor-
mation transfer, based on transfer entropy, captures information transmission [12] from
source Y to destinationX , at a particular time-step n+1. It is defined as the information
provided by the source yn about the destination’s next state xn+1 that was not contained
in the past of the destination x

(k)
n :

tY→X(n+ 1) = lim
k→∞

log2
p(xn+1 | x(k)

n , yn)

p(xn+1 | x(k)
n )

. (2)

It is important to realise that information transfer between two variables does not re-
quire an explicit communication channel, it rather indicates a high degree of directional
synchrony or nonlinear correlation between the source and the destination. It charac-
terises a degree of predictive information transfer, i.e., “if the state of the source is
known, how much does that help to predict the state of the destination?” [12].

Sometimes it is useful to condition the local information transfer on another con-
tributing process W , considering the local conditional transfer entropy [13]:

tY →X|W (n+ 1) = lim
k→∞

log2
p(xn+1 | x(k)

n , yn, wn)

p(xn+1 | x(k)
n , wn)

. (3)

In this study we used the average information transfer tY→X|W = 〈tY →X|W (n+1)〉n.
One may, however, utilise local values as well in order to trace the information dynamics
over time, e.g. identifying its peaks during specific moments.

2.2 Pair-Wise Information Dynamics and Interaction Diagrams

In order to estimate strength of directed coupling between two agents we compute the
average transfer entropy between them during any given game. For a game g with N
time steps, between two teams X and Y, the local transfer entropy at each time step n ≤
N is calculated between each source variable Yi (a change in the 2D positional vector of
agent i from team Y) and destination variable Xj (a change in the 2D positional vector
of agent j from team X), given the change in current 2D ball position b:

tgYi→Xj |b(n) .

Dynamics of the ball is conditioned upon in order to compute the transfer entropy in
context of the game, which is greatly affected by the ball trajectories. Then, the average
transfer entropy for each source-destination pair over the entire match is calculated as
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T g
Yi→Xj |b =

1

N

N−1∑

n=0

tgYi→Xj |b(n) . (4)

Information-Sink Diagrams. Once the game’s average transfer entropy, T g
Yi→Xj |b,

is determined for each pair Yi, Xj , we identify the source agent Ŷi(Xj , g) from the
opposing team that transfers maximal information to a given agent Xj:

Ŷi(Xj , g) = argmax
Yk∈Y

T g
Yk→Xj |b . (5)

Over a number of games G, we select the source agent Ŷi(Xj) that transfers maxi-
mal information to Xj most frequently, as the mode of the series {Ŷi1(Xj , 1), . . . ,

ŶiG(Xj , G)}. Then, we consider the average information transfer between these two
agents Ŷi = Ŷi(Xj) and Xj across all games:

TŶi→Xj |b =
1

G

G∑

g=1

T g

Ŷi→Xj |b . (6)

Intuitively, the movement of the source agent Ŷi = Ŷi(Xj) affected the agent Xj

more than movement of any other agent in team Y. That is, the agent Xj was respon-
sive most to movement of the source agent Ŷi. Crucially, when we use the notion of
responsiveness to another (source) agent, we do not load it with such semantics as be-
ing dominated by, or driven by that other agent. Higher responsiveness may in fact
reflect either useful reaction to the opponent’s movements (e.g., good marking of the
source), or a helpless behaviour (e.g., constant chase after the source). Vice versa, gen-
erating a high responsiveness from another agent may result in either a useful dynamic
(e.g., positional or even tactical dominance over the responding agent), or a wasteful
motion (e.g., being successfully marked by the responding agent). In short, responsive-
ness captured in the maximal transfer TŶi→Xj |b detects a directed coupling from the

source agent Ŷi to the responding agent Xj and should not be interpreted in general as
a simple index for comparative performance. It is, however, a useful identifier of the
opponents’ source player that was affecting a given agent Xj most.

Given a series of games, we identify the pairs “source-responder” by finding the
source agent for each of the agents on both teams (always choosing the source among
the opponents). The identified pairs can be visualised in an “information-sink” interac-
tion diagram D̂(Y,X) that depicts a directed graph with 20 nodes representing play-
ers (typically excluding goalkeepers), with the edges representing all source-responder
pairs, where a single edge is incoming to every agent from the corresponding source.

Figure 1a shows the information-sink interaction diagram D̂(Oxsy, Gliders) built for
several hundred games between Oxsy and Gliders (cf. Results section).

Information-Base Diagrams. Similarly, having obtained the average transfer entropy
during a game, T g

Yi→Xj |b for all pairs, we identify the responder agent X̌j(Yi, g) that
“received” maximal information from a given agent Yi. Formally, for any game g:

X̌j(Yi, g) = argmax
Xk∈X

T g
Yi→Xk|b . (7)



Towards Quantifying Interaction Networks in a Football Match 5

Over a number of games G, we select the responder agent X̌j(Yi, g) to whom max-
imal information was transferred by Yi most frequently, as the mode of the series
{X̌j1(Yi, 1), . . . , X̌jG(Yi, G)}. Finally, we consider the average information transfer
between these two agents Yi and X̌j = X̌j(Yi, g) across all games:

TYi→X̌j |b =
1

G

G∑

g=1

T g

Yi→X̌j |b . (8)

The pairs (Yi, X̌j) identified for each agent treated as a source are combined in an
“information-base diagram” Ď(Y,X).

The intuition in this case is the same as in the previous subsection — the difference is
that now we identify the highest responder agent, having selected a source. In general, of
course, the pair (Ŷi, Xj) defined for the information-sink diagrams and the pair (Yi, X̌j)
defined for the information-base diagrams may differ. That is, the agent Yi may be the
most informative source Ŷi for the agent Xj , among all possible sources in Y , but the
agent Xj may be not the best responder X̌ to the agent Yi among all possible responders
in X, and vice versa.

While an information-sink diagram reflects more where the information tends to
be transferred to, an information-base diagram tends to depict where the information is
transferred from. Neither of the diagrams presents a complete “story”, highlighting only
a small part of the overall information dynamics. There are more comprehensive dia-
grams, where the edges would represent in the descending order the highest information
transfers for all the pairs, retaining a given number of such links, or keeping the edges
for the information amounts above a certain threshold, etc. — in these instances, some
agents may have no incoming or outgoing links at all. Nevertheless, we believe that
the interaction diagrams presented here are valuable, being particularly simple and easy
to interpret. Specifically, for an information-sink diagram every agent has an incoming
edge, and for an information-base diagram every agent has an outgoing edge.

Figure 2a shows the information-base interaction diagram Ď(Oxsy, Gliders) built
for several hundred games between Oxsy and Gliders (cf. Results section).

2.3 Tactical Analysis

Building up on the information dynamics measures, it is possible to investigate group
behavior in complex systems, such as swarms. For instance, recent studies by Wang et
al. [17] quantitatively verified the hypothesis that the collective memory within a swarm
can be captured by active information storage. Higher values of storage are associated
with higher levels of dynamic coordination, while information cascades that correspond
to long range communications are captured by conditional transfer entropy [12,13]. In
other words, information transfer was shown to characterise the communication aspect
of collective computation distributed within the swarm.

In applying information dynamics to the RoboCup 2D Simulation League we make
the following conjecture:

a higher information transfer tY→X|W from the source Y (e.g. dynamics of
player Y ) to the destinationX (e.g., dynamics of another player X), in the con-
text of some other dynamics W (e.g., the movement of the ball W ), is indicative
of a higher responsiveness of the process/player X to the process/player Y .
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That is, the “destination” playerY responds, for example, by repositioning, to the move-
ment of the “source” player Y . This may apply to many situations on the field, for in-
stance, when one team’s forwards are trying to better avoid opponent’s defenders, we
consider the information transfer tYdef→Xatt from defenders Yi ∈ Ydef to forwards
Xj ∈ Xatt, where the involved probability distributions are obtained for different rela-
tive positions on the soccer field. Vice versa, the dynamics of the opponent’s defenders,
who are trying to better mark our team’s forwards, are represented in the information
transfer tXatt→Ydef

from forwards Xj ∈ Xatt to defenders Yi ∈ Ydef . These two ex-
amples specifically consider a coupling between the attack line Xatt of our team and the
defense line Ydef of opponent’s team (henceforth we keep denoting opponent’s lines
(attack, midfield or defense) by Yline and our team’s lines by Xline).

We further contrast these two transfers in the coupled lines:

Δ(Xatt,Ydef ) = tYdef→Xatt − tXatt→Ydef
. (9)

When our forwards are more responsive on average to the opponent’s defenders than
the opponents defenders are to our forwards, tYdef→Xatt > tXatt→Ydef

, and the relative
responsiveness Δ(Xatt,Ydef ) > 0. It is also possible to combine relative responsive-
ness scores for each of the coupled lines in the overall tactical relative responsiveness
(including, for example, relative scores for midfielders Xmid and Ymid):

Δ(X,Y) = Δ(Xatt,Ydef ) +Δ(Xdef ,Yatt) +Δ(Xmid,Ymid) . (10)

Here all the transfers to team X are added up, and the transfers from team X are sub-
tracted away. When each of the transfers is conditioned on some other contributor W
(e.g., all the dynamics are computed in the context of the ball movement), the overall
tactical relative responsiveness Δ(X,Y|W ) is also placed in this specific context, W .

In principle, competitive situations result in quite vigorous dynamics within the in-
volved lines and overall formations, and the team that manages to achieve a higher
degree of tactical relative responsiveness does often perform better. While this is not
a hard rule, we may correlate the scores of relative responsiveness (e.g., line-by-line)
with the game scores, and identify the lines which impacted on the games more.

Our tactical analysis also involves computation of the active information storage
within the teams. We characterise team’s rigidity AX as the average of information stor-
age values for all players of the team. We also determine the relative rigidity A(X,Y) =
AX −AY for the teams (or their coupled lines). The hypothesis here is that

a higher rigidity AX within the team is indicative of a higher dependence of
players on each other, or a higher redundancy within the team’s motion.

The average information storage, or rigidity AX, is high whenever one can predict
the motion of some players based on the movements of their other teammates. In
these cases, the players are not as independent of each other as a truly complex or
swarm behavior would warrant, making the tactics less versatile. Obviously, this may
be counter-productive, since an opponent team can counteract by only partially ob-
serving the ‘rigid’ team’s dynamics, and deducing the rest. Consequently, the relative
rigidity A(X,Y) should be anti-correlated with the team X performance against team
Y.
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3 Results

To compute the measures described in previous sections, produce interaction diagrams
and correlate tactical responsiveness with team performance, we carried out multiple
iterative experiments matching Gliders2013 up against some well-known teams, such as
Oxsy [18] and Marlik [19]. The correlation scores (Pearson product-moment correlation
coefficients) reported below were tested for statistical significance, and corrected for
multiple comparisons.

3.1 Interaction Diagrams

Figure 1 presents the information-sink interaction diagram D̂(Oxsy, Gliders) and the
information-base interaction diagram Ď(Oxsy,Gliders), built over almost 500 hundred
games between Oxsy and Gliders. Analogously, Fig. 2 shows the information-sink
interaction diagram D̂(Marlik,Gliders) and the information-base interaction diagram
Ď(Marlik,Gliders), built over nearly 450 hundred games between Marlik and Gliders.

(a) Information-sink diagram for Gliders (left)
and Oxsy (right)

(b) Information-sink diagram for Gliders (left)
and Marlik (right)

Fig. 1. Interaction-sink diagrams. Arrows represent highest information transfer between players.
MATLAB copper colormap is used to indicate the strength of transfer, varying smoothly from
black (weakest) to bright copper (strongest). Example interactions: two arrows in the left diagram
from Oxsy’s central mid-fielder, positioned in the centre circle, to Gliders’ left and right defenders
indicate that these defenders respond mostly to the central mid-fielder’s motion.

Several interesting observations can be made. In general, the diagrams are highly
symmetric with respect to left and right wings. The diagrams represent interactions av-
eraged over many games, and so the symmetry demonstrates that the employed methods
are robust to noise present in individual games. Also, the information-sink diagrams do
differ from information-base diagrams, as expected. We begin a more detailed analysis
with the information-sink interaction diagrams 1a and 1b:

– Gliders’ defenders mostly respond to opponent’s central mid-fielder;
– Gliders’ mid-fielders mostly respond to opponent’s central mid-fielder;
– Gliders’ forwards mostly respond to Oxsy’s defenders or Marlik’s central mid-

fielder;
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(a) Information-base diagram for Gliders (left)
and Oxsy (right)

(b) Information-base diagram for Gliders (left)
and Marlik (right)

Fig. 2. Interaction-base diagrams. Arrows represent highest information transfer between play-
ers. MATLAB copper colormap is used to indicate the strength of transfer, varying smoothly
from black (weakest) to bright copper (strongest). Example interactions: four arrows in the right
diagram from Marlik’s central mid-fielder, positioned in the centre circle, to all Gliders’ defenders
indicate that the defenders respond mostly to the central mid-fielder’s motion.

– Oxsy’s wing forwards mostly respond to Gliders’ side defenders, while Oxsy’s
centre-forward does not mostly respond to Gliders’ centre-backs;

– Oxsy’s side defenders mostly respond to Gliders’ wing forwards, while Oxsy’s
centre-backs do not mostly respond to Gliders’ centre-forward;

– Marlik’s forwards mostly respond to Gliders’ central mid-fielder;
– Marlik’s defenders mostly respond to Gliders’ side-wingers.

Now we turn our attention to the information-base interaction diagrams 2a and 2b:

– Gliders’ defenders mostly transfer information to Oxsy’s wing forwards, but not to
their centre-forward;

– practically every Oxsy’s player transfers infromation to Gliders’ centre-forward;
– Gliders’ defenders mostly transfer information to Marlik’s centre-forward, but not

to their wing-forwards;
– Gliders’ centre-forward is transferred information from many Marlik’s players, but

not from their side defenders;
– Gliders’s wing forwards are tightly coupled with Marlik’s side defenders.

Even such a brief analysis helps to point out that in the contest with Oxsy, Gliders
have a problem with their centre-backs not actively checking the opponent’s centre-
forward, but a similar problem also exists in Oxsy’s own defense. Not surprisingly,
most goals are scored in these games through the centre and not via the wing attacks
and crosses. In addition, it appears that a lot of Gliders’ motion is tuned to opponents’
central mid-fielder which highlights a high degree of redundancy that may need to be
exploited. In the games against Marlik it is evident that the opponents central mid-
fielder plays a key role in both defense and attack, which again presents an opportunity
to exploit such an overload. At the same time, it appears that a lot of interactions occur
on the flanks of Marlik’s defense (defenders mark forwards who try to evade), while
Marlik’s wing forwards are not marked by Gliders’s side defenders.



Towards Quantifying Interaction Networks in a Football Match 9

3.2 Tactical Analysis

In this subsection, we correlate scores of relative responsiveness (either line-by-line or
overall), as well as rigidity, with the game scores, and identify the lines which impacted
on the games more. That is, we compute a correlation coefficient between a series of
game scores and a series of information values per game.

The analysis of the games between Gliders and Oxsy shows that a sufficiently high
correlation (ρ1 = 0.425) exists between the game score and only one relative respon-
siveness Δ(Glidersdef ,Oxsyatt). That is, the games between these two teams are
decided mostly in the opposition between Gliders’ defenders and Oxsy’s forwards.
Specifically one may conjecture that whenever the Oxsy’s forwards are more responsive
in evading the defense, Oxsy tend to win, and whenever Gliders’ defenders are more
agile in closing on to the forwards, Gliders tend to win.

However, the main information transfer component of Δ(Glidersdef ,Oxsyatt), cor-
related with the performance, is tOxsyatt→Glidersdef , at 0.553 (“our responsiveness helps
our scoreline”), while the correlation with tGlidersdef→Oxsyatt

is just 0.089 (“opponents
responsiveness does not hurt our scoreline”). This means that on average the relative
agility of Gliders’ defenders is correlated with the scoreline more than the response of
Oxsy’s forwards. This is not a causal inference, but simply a correlation observation.

The dynamic contests between Gliders’ forwards and Oxsy’s defenders, or between
the midfield players, do not seem to be greatly correlated with the scoreline on av-
erage (the scoreline is correlated with Δ(Glidersatt,Oxsydef ) at just 0.099, and with
Δ(Glidersmid,Oxsymid) at just 0.216). The transfer components of these characteris-
tics do not show any higher correlations either. The overall tactical relative responsive-
ness Δ(Gliders,Oxsy) is correlated with the scoreline at a credible level of 0.310.

As expected, the relative rigidity A(Gliders,Oxsy) = AGliders −AOxsy is observed to
be highly anti-correlated with the scoreline: ρ = −0.641. The main contributing part
is found to be the rigidity of the mid-fielders: the correlation of rigidity A(Glidersmid,
Oxsymid) with the performance is also quite high at −0.503, and the major component
of this comes due to the rigidity of Oxsy’s mid-fielders: correlation of A(Oxsymid) is
0.377 (it is positive as the scoreline is presented as Gliders vs Oxsy, so that higher game
scores for Gliders are correlated with higher Oxsy’s rigidity).

The tactical analysis of the games between Gliders and Marlik produces mostly con-
curring observations. In this pair, the outcome is mostly decided in the contest between
Gliders’ attack and Marlik’s defense: the correlation between relative responsiveness
Δ(Glidersatt,Marlikdef ) is low but statistically significant: 0.157. Interestingly, how-
ever, both individual components are anti-correlated with the scoreline: the transfer
tMarlikdef→Glidersatt is anti-correlated at −0.210, and the transfer tGlidersatt→Marlikdef is
anti-correlated at −0.366.

This poses an interesting question: why two individual components of the relative
responsiveness are both anti-correlated with the scoreline, but their combination is pos-
itively correlated, albeit at a low level? One possible explanation is as follows. Both
involved groups (Gliders forwards and Marlik defenders) are in almost constant inter-
dependent motion that often confounds the players. When Marlik defenders respond
to Gliders forwards’ attempts to find free spots, they effectively mark and/or block the
forwards, resulting in lower scores for Gliders team — hence, the negative correlation
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between tGlidersatt→Marlikdef and the scoreline, which is seen from the Gliders’ perspec-
tive (“opponents responsiveness hurts our scoreline”). However, when Gliders forwards
respond to Marlik defenders’ attempts to mark them, they may abandon good scoring
positions, also resulting in lower scores for Gliders team — hence, the negative corre-
lation between tMarlikdef→Glidersatt and the scoreline (“our responsiveness also hurts our
scoreline”). Nevertheless, when the scoreline is correlated with the relative responsive-
ness, rather than the individual components of the latter, the result is positive but low.
This means that the remaining difference is still slightly important because of the inter-
dependence of motion: when Gliders forwards reposition, they attract Marlik defenders
again, and the ‘circle’ repeats, until one side gains a brief advantage (“when our respon-
siveness is higher than opponents responsiveness, it helps our scoreline”). In short, it is
not the level of our responsiveness that is positively correlated with the scoreline, but
the level of relative responsiveness.

There are no surprises with the analysis of rigidity: the relative rigidity A(Gliders,
Marlik) = AGliders −AMarlik is highly anti-correlated with the scoreline: ρ = −0.505. It
is interesting that (relative) rigidities of separate groups (defense, mid-field, attack) were
not found to be correlated significantly with the outcomes: the dependence is detected
only at the overall team level, being arguably an emergent property in this contest.

In summary, the findings demonstrate applicability of the information dynamics
measures to analysis of football matches, revealing the areas of most intense compe-
tition and the extent of interactions. The latter aspect is evident when one compares the
interpretations of relative responsiveness in the games against Oxsy and against Mar-
lik. The higher responsiveness of Gliders’ defenders to Oxsy’s forwards was found to
be positively correlated with the scoreline, while the higher responsiveness of Glid-
ers’ forwards to Marlik’s defenders was anti-correlated (as was the responsiveness of
Marlik’s defenders to Gliders’ forwards). The difference shows that in the first case
responses were productive and the interaction was clearly directional, while in the
second instance, the responses were strongly interdependent and the interaction was
quite circular. These observations are also supported by the interaction diagrams: both
information-sink and information-base diagrams 1a and 2a for Gliders vs Oxsy show
that Gliders’ defenders respond strongly to Oxsy’s forwards, while the information-sink
and information-base diagrams 1b and 2b for Gliders vs Marlik highlight the extent of
cross-coupling between Gliders’ forwards and Marlik’s defenders. The anti-correlation
of rigidity in both experimental set-ups is also encouraging: this measure can be sug-
gested as a simple robust measure of tactical flexibility, at the emergent team level.

4 Conclusion

The paper proposed an approach for constructing interaction networks that reveal sig-
nificant coupled dynamics produced during team games, or other activities that are
characterised by concurrent cooperation and competition. The approach uses a novel
application of information dynamics analysing pair-wise interactions and group-level
tactics of RoboCup 2D Simulation League games. The input data needed for the anal-
ysis contain only positional data, such as planar coordinates and their changes, fol-
lowed by computation of corresponding probability distributions and local information
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transfer measures. The model-free approach does not include any re-construction of the
players’ behaviour, being purely data-driven. Also, the method is not aimed at explicit
interactions (such as passes) within a team (cf. [3]), but rather at implicit interactions,
across teams, that may be delayed and/or long-ranged.

The interaction networks were exemplified with two sub-types highlighting different
“slices” of the directed interactions: information-sink and information-base diagrams.
In an information-sink diagram every node (every player) has an incoming edge, while
in an information-base diagram every node has an outgoing edge. These diagrams were
computed for two experimental set-ups that matched our team (Gliders) against two
well-known teams, Oxsy [18] and Marlik [19], showing interesting player-to-player
interactions, and pointing out weak spots and areas to be exploited.

The follow-up tactical analysis involved computation of information transfer and
storage, and two hypotheses. The first one related positive information transfer from
players Y to players X as an indication of responsiveness of the latter, suggesting to
compute relative responsiveness between the opposing lines of two teams. The second
hypothesis connected the information storage within the team with the team’s rigidity,
harming the fluidity and tactical richness of the team. This relation yielded the score for
relative rigidity between the opposing teams. Both measures, relative responsiveness
and rigidity, were correlated with the game results, and the obtained observations sup-
ported the hypotheses. In addition, the results pointed to important couplings that were
particularly intense, and the main areas where the game outcomes were mostly decided.

This approach has been further successfully applied to opponent modelling and se-
lecting the best available tactics in an opponent-specific way — this topic is a subject
of future research. We hope that the proposed methods would be useful not only in the
RoboCup leagues, but also in various analyses of team games, whether virtual or real.
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