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Robotic ecology: Tracking small dynamic animals with
an autonomous aerial vehicle
Oliver M. Cliff1*, Debra L. Saunders2, Robert Fitch1,3

Understanding animal movements that underpin ecosystem processes is fundamental to ecology. Recent
advances in animal tags have increased the ability to remotely locate larger species; however, this technology
is not suitable for up to 70% of the world’s bird and mammal species. The most widespread technique for
tracking small animals is to manually locate low-power radio transmitters from the ground with handheld
equipment. Despite this labor-intensive technique being used for decades, efforts to reduce or automate this
process have had limited success. Here, we present an approach for tracking small radio-tagged animals by
using an autonomous and lightweight aerial robot. We present experimental results where we used the robot
to locate critically endangered swift parrots (Lathamus discolor) within their winter range. The system combines
a miniaturized sensor with newly developed estimation algorithms to yield unambiguous bearing- and range-
based measurements with associated measures of uncertainty. We incorporated these measurements into
Bayesian data fusion and information-based planning algorithms to control the position of the robot as it
collected data. We report estimated positions that lie within about 50 meters of the true positions of the birds
on average, which are sufficiently accurate for recapture or observation. Further, in comparison with experienced
human trackers from locations where the signal was detectable, the robot produced a correct estimate as fast or
faster than the human. These results provide validation of robotic systems for wildlife radio telemetry and suggest
a way for widespread use as human-assistive or autonomous devices.
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INTRODUCTION
Conservation management of certain critically endangered species
relies on understanding how these species interact with their environ-
ment. This is achieved by tagging and tracking individual animals in
the wild (1–3). Aerial robot systems can access rugged areas that are
difficult for humans to traverse and thus are viewed as a potentially
revolutionary tool for data collection in wildlife ecology (4, 5). How-
ever, this potential remains largely unrealized. Robot systems have yet
to achieve levels of signal detection, tracking accuracy, and speed that
are sufficient to legitimize their role as a replacement for human track-
ers. Despite recent advances in automated wildlife telemetry tracking,
very little is known about the movement of small, dynamic migratory
species, of which many have reached critically endangered status. For
large to medium animals, the miniaturization of GPS tags with remote
data readout has facilitated a marked increase in understanding the
movements of a diversity of species (6, 7). Methods such as satellite
telemetry have far-reaching applications, from investigating migration
routes and wintering areas of large migratory birds (8–10) to studying
the dynamics of aquatic predators (11, 12). Unfortunately, these
approaches are still only suitable for about 70% of bird species and
65% of mammal species (2). In the case of smaller species that return
to the same breeding areas seasonally, miniature nontransmitting data
loggers can be used (2); however, retrieving these data requires relo-
cating the animals in situ. Because of this challenge, very high frequen-
cy (VHF) tracking has become one of the most useful techniques in
ecology and management (13). This involves attaching small radio
transmitters to animals and subsequently tracking the target species.
Although scientists have been using VHF tracking since the early
1960s (14), data yielded by this approach are sparse because of the
manual labor involved (2) and the need to constantly seek higher eleva-
tions to increase signal detectability. Thus, researchers are increasingly
using low-cost unmanned aerial vehicles (UAVs) equipped with visual
sensors as alternative tools for improving conservation management
and wildlife monitoring (4, 5). However, the capability of these systems
is limited in terms of identifying individual animals and locating
animals in unknown locations. Practical considerations when using re-
motely piloted aircraft for fieldwork are discussed in (15).

In recent years, there has been increased interest in end-to-end
wildlife telemetry tracking with robotic systems (4), where the robot
moves autonomously to track a live target animal. The usefulness of
these systems, however, has yet to be proven in direct performance
comparison with the traditional manual approach. Ongoing research
is aimed at tracking radio-tagged carp in Minnesotan lakes using au-
tonomous surface vehicles on the water and mobile ground vehicles
when the lake is frozen (16–21). Although this project has yielded
seminal work in the field, the use of ground and surface vehicles is
untenable for wildlife situated in rugged habitats. We recently validated
the use of a multirotor UAV for autonomously localizing live radio-
tagged birds in such environments (the Manorina melanocephala)
(22). Here, we present validation that robotic systems can perform
comparably to experienced human trackers in head-to-head exper-
iments. Our system is illustrated in Fig. 1.

The majority of research in radio tracking with an aerial vehicle
has focused on isolated subsystems. Although these systems were
typically motivated by the idea of tracking small animals [e.g., bird
(23–26) and fish species (27, 28)], only simulations or prototypes
have been presented with limited field testing. Alternatively, when
tracking a relatively stationary target, the observations can be con-
sidered more robust, and thus, attention in this field has shifted to
optimizing planning for single- (18, 20, 21) or multirobot (19, 29)
systems. The main assumption the authors have made is that the
sequential observations are homoscedastic, meaning that the uncer-
tainty over each measurement is constant or bounded. However, with
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a sporadic and unpredictable live target, this assumption is violated
because of the resulting wide spectrum of observation quality from
noisy to precise. As we show in this paper, this induces heteroscedastic
observations, where the uncertainty varies with every observation.
Failing to distinguish between low- and high-quality observations
can lead to overconfident measurements that cause spurious location
estimates or highly uncertain location estimates that are of little value.

A mathematically valid observation model is critical in planning
the motion of the robot to improve the location estimate. In robotics,
this general problem is known as active perception (30, 31) and intro-
Cliff et al., Sci. Robot. 3, eaat8409 (2018) 17 October 2018
duces a coupling between data collection
and planning. The idea of passively locat-
ing transmitting radio sources has been
investigated in operations research moti-
vated by search-and-rescue missions,
where stationary distress beacons must
be recovered rapidly. Hence, the task is
a coverage problem solved via offline
strategies with an emphasis on minimiz-
ing path cost over the entire area or tele-
operated by humans (32). Alternatively,
when the wildlife habitat is known and
bounded, sensor networks can be placed
to precisely track an animal’s location
(33, 34). In our case, we require fast, pre-
cise estimates without intervention and
thus use active strategies where the obser-
vation quality relies crucially on an ap-
propriate sequence of viewpoints (35).
Our objective is to reduce uncertainty
(entropy) of the target location; thus,
the task of actively tracking targets falls
under the informative path planning
paradigm (36). This problem is known
to be NP-hard (37) and has been studied
extensively over the past decade (38), with
many applications focusing specifically on
UAVs (39–44). In this paper, we lever-
aged these results to obtain an approxi-
mately optimal sequence of actions by
greedily selecting the most informative
viewpoints at each decision step.

In this work, we present rigorous
theoretical analysis and in-field validation
of a complete system for autonomous
wildlife tracking. We show that this sys-
tem addresses many theoretical and en-
gineering challenges to a degree that is
sufficient to match or surpass the per-
formance of skilled human trackers from
a location where signals are detectable.
First, we provided a mathematical deri-
vation for our data-driven sensor model,
which has previously been validated over
a number of trials on real birds and sta-
tionary targets (22). This range-azimuth
model was further used to predict the
quality of future viewpoints in planning
an approximately optimal sequence of
observations. We then directly compared this system with human op-
erators in the problem of tracking the critically endangered swift par-
rot (Lathamus discolor) species in the wild. In six of eight trials, the
estimated bird locations fell within 50 m of the true locations on av-
erage, which was sufficient for recapture, detailed field observation, or
data readout. In the remaining two trials, we were unable to establish
ground truth position because the target bird moved during the flight
and visual confirmation was lost. Moreover, the time taken to achieve
these estimates was comparable to, and often faster than, experienced
human trackers. Our demonstration validates the concept of a robotic
A
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Fig. 1. The aerial robot system is designed to track small animals with lightweight radio tags attached. Swift
parrots (L. discolor) (A) are considered here; noisy miners (M. melanocephala) (B) were considered in our previous
work (22). (C) The robot was able to track swift parrots and yielded performance comparable with an expert human
operator performing traditional wildlife telemetry tracking. The multirotor platform, shown from the front (D) and
rear (E), includes a lightweight directional antenna system and payload that receives the signal strength from the
tag (22). These data were then transmitted to a GCS for processing and online decision-making.
2 of 10
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system for wildlife telemetry tracking used as an autonomous or human-
assistive device in real field conditions. This milestone motivates fur-
ther engineering development that may enable more widespread use
of autonomous robots in movement ecology and in conservation man-
agement of small, dynamic moving species.
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RESULTS
In this section, we report on the approaches used for sensor modeling,
data fusion, and decision-making. We then present field trial results,
followed by a discussion of insights into the global and local spatio-
temporal movements of swift parrots that were gathered from the trials.

The material in this section has its basis in the bearing-only,
heuristic approach presented in previous work (22). Here, we present
a full range-azimuth algorithm derived rigorously from first principles.
We also provide variance analysis and proof that the objective func-
tion is monotone submodular, an important property that is useful in
designing efficient planning algorithms.

Likelihood functions for observations
The most critical component of the system is the sensor model, which
allowed us to convert the signal received from the radio tag to an in-
stantaneous estimate of the target’s location. An inaccurate or over-
confident observation can lead to poor decision-making and imprecise
final location estimates.

LetX∈S denote the vehicle location,Y∈S the targets’ geograph-
ic coordinates within some workspace S � ℝ2, and Z an observa-
tion in some measurement space H. We are interested in learning
the likelihood function ℓ(y; x, z), that is, the probability of receiving
the measurement z at location x, given the target location y:

ℓðy; x; zÞ ¼ PrðX ¼ x;Z ¼ zjY ¼ yÞ for y∈S ð1Þ

Note that we could consider uncertainty in the vehicle location
x by including it in the measurement z; however, we assumed full
knowledge of the vehicle state in this paper. We use the convention
that uppercase symbols (e.g., Y and Z) are random variables, lower-
case symbols (e.g., y and z) denote their realizations, and bold denotes
a set. Further, true (or optimal) quantities are denoted with an asterisk
(e.g., y* is the true location of the bird), and estimates are denoted with
a hat (e.g., ŷ is the target estimate).

To construct our sensor models, we must determine what we are
measuring and the uncertainty over these measurements. In this work,
we take both range and azimuth readings of the target, where both
observations are assumed to be normally distributed. This results in
each measurement comprising the mean and variance z = {m, s2}.
Given a measurement function h: ðS � SÞ→H that maps the vehicle x
and target state y to the measurement space H, the Gaussian likelihood
function is

ℓðy; x; zÞ ¼ f ðhðx; yÞ; m; s2Þ ð2Þ

where f is the probability density function (PDF) of the normal distribution.

Observed and expected sensor data
To derive our likelihood functions, we first characterized the raw sensor
data and described the model used for obtaining our measurements.
Cliff et al., Sci. Robot. 3, eaat8409 (2018) 17 October 2018
More details on the system collecting these measurements are given
in Materials and Methods.

The radio tag emits an on-off keyed pulse signal; this transmis-
sion was received by the payload on board the UAV, and the received
signal strength indicator (RSSI) values of the signal were captured and
filtered. These RSSI values are linearly related to the power received
during a transmission and are used as the raw sensor data for the ob-
servation. The range and bearing likelihood functions are based on
these raw values and the learned sensor model.

The antenna used on board the UAVwas a two-point phased array:
a lightweight, unambiguous directional antenna designed for radio te-
lemetry with multirotor vehicles (22). The array comprised two mono-
poles fed through a passive combiner circuit, which yielded a radiation
pattern with a front lobe and back null. To reduce noise and spurious
readings due to multipath propagation, the UAV remained stationary
while yawing through a full rotation. During this rotation, the contin-
uous RSSI values were filtered and sampled at a constant rate to give a
scalar value gn associated with the bearing of the nth value fn. These
values were then transmitted to a base station, giving the recorded gain
pattern g = (g1, g2, … , gN). As a result, the random vector G = g is a
function of the vehicle X and target Y location. Further, let b(x, y) de-
note the bearing from x to y. The true bearing to the target from robot
location x is then q* = b(x, y*). We assume that the error for each
recorded RSSI value is normally distributed with an unknown vari-
ance s2(q*) that remains constant throughout an observation, that is,
for arbitrary gn ∈ g

gn ¼ Ε GnjQ ¼ q*
� �þ vG; vGeN 0; s2ðq*Þ� � ð3Þ

where s2(q*) = V(Gn|Q = q*).
We obtain the expected gain pattern Ε[G|Q] by linear regression.

Specifically, we fit the expected gain pattern to a Jth-order Fourier se-
ries φ: ℝ → ℝ, that is, given the true bearing q*,

Ε GnjQ ¼ q*
� � ¼ φðfn þ q*Þ ¼ a0 þ ∑

J

j¼1
ajcosðjðfn þ q�ÞÞ

þ ∑
J

j¼1
bjsinðjðfn þ q�ÞÞ ð4Þ

From this Fourier model, we obtain the expected gain pattern
φ(q) = Ε[G|Q = q], where φ = ℝ → ℝN is generated by sampling
the Fourier series (Eq. 4) with a phase offset q at N regular inter-
vals, that is, φ(q) = (φ(q), φ(q + 2p/N), …, φ(q + 2p)).

Given the expected and observed sensor output, φ and g, the main
goal of Bayesian sensor data fusion is to compute PDFs of the bearing
and range to a target from the robot. Given that the likelihoods are
assumed to be Gaussian, the measurement tuple Z equals {m(G), s2(G)}.
To learn the mapping from G to Z, we use a data-driven approach
described in the following subsection.

Azimuth likelihood function
We model the likelihood of each azimuth measurement with a
Gaussian bearing-error model (45), where ZQ ¼ fmQðGÞ; s2QðGÞg.
That is, the difference between the true bearing to the target q* and
the estimated bearing q̂ (i.e., the bearing error) is Gaussian distrib-
uted. The bearing estimate q̂ ¼ mQðgÞ and its variance s2QðgÞ are not
3 of 10
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measured directly but instead given as functions of observation
quality (i.e., the correlation coefficient, discussed below). As a
result, when G = g, the bearing-error likelihood function ℓQ is
given by

ℓðy; x; zQÞ ¼ f ðbðx; yÞ; mQðgÞ; s2QðgÞÞ ð5Þ

Now, given our model φ of the gain pattern, our problem becomes
that of inverse regression to find the expected bearing and uncertainty.
The Gaussian bearing-error assumption states

q̂ ¼ q*þ vQ; vQeNð0; s2QðgÞÞ ð6Þ
Cliff et al., Sci. Robot. 3, eaat8409 (2018) 17 October 2018
when q̂ ¼ Ε½Qjg� ands2Q ¼ VðQjgÞ. We find the expected azimuth by
minimizing the sum of squares of the residuals, that is,

q̂ ¼ mQðgÞ ¼ arg min
q∈½0;2pÞ

‖g� φðqÞ‖2 ð7Þ

To infer the variance V(Q|g) for a given signal g, we note that the
collection of {G} is heteroscedastic, that is, the conditional variance
can change with each observation. This is shown in the scattergram
in Fig. 2, where the bearing error is plotted against observation quality
(correlation). Sensor data used to construct this example were col-
lected from a stationary radio tag as described in our previous work
(22). We assume that this unexplained variance is due to hidden
causes of observation noise, such as the target animal moving during
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Fig. 2. Obtaining range-azimuth likelihood functions from observations. (Top row) Two example observations taken online with a stationary target. The
radial plots illustrate real RSSI readings (green line) g and a third-order Fourier series model φ(q) of the radiation pattern (black line). The model is offset
(rotated) such that it is oriented toward the true bearing to the target q*, and the RSSI values are offset by the maximum correlation mQ(g) = arg maxq rϕ(q),g.
These offsets are illustrated with dashed green and black radial lines. (Left) The maximum value correlation coefficient rφ̂ ; g maps to a bearing-error s2QðgÞ, which
is illustrated in the grid plots below. (Right) The maximum RSSI value gmax maps to an expected range mR(g) with a fixed range-error ŝ2

R, giving the associated
grid plots below.
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a measurement or spurious recordings due to multipath interference.
In typical regression, heteroscedasticity is considered undesirable and
is reduced by introducing more regressors or nonlinear transforma-
tions of the existing variables. In our case, given that this knowledge
is hidden, we cannot introduce more variables and instead marginalize
out this quantity to infer the conditional variance from data. Below, we
show how the coefficient of determination expresses the proportion of
variability in our model (i.e., the heteroscedasticity is attributed to
bearing error).

In the context of regression, we can obtain the fraction of variance
unexplained (FVU) for a response variable through the coefficient of
determination. In linear regression, where we have the sample vari-
ance s2g as an estimate of the population variance V(G), the FVU is
given by the sample correlation coefficient r2:

VðGjQ ¼ q̂Þ
VðGÞ ≃

s2
gjq̂
s2g

¼ 1� r2
g;φðq̂Þ ð8Þ

However, we are interested in the bearing variance V(Q|G), which
we can approximate from the model variance V(φ(Q)|G) by Taylor
expansion. Recall that our estimate q̂ ¼ mQðg1; g2;…gNÞ is a function
of the random vector G. We can approximate the variance of this
mapping via a first-order Taylor expansion (46),

VðQjGÞ≃∑
N

i¼1
∑
N

j¼1
Sij

∂mQðφðQÞÞ
∂Gi

∂mQðφðQÞÞ
∂Gj

ð9Þ

Now, because the measurement G comprises independent and
identically distributed variables Gn, the covariance matrix is given
by S = V(G|Q)IN, where IN is the identify matrix. This gives the
conditional variance in Eq. 9 as

VðQjGÞ≃VðGjQÞN ∑
N

n¼1

∂mQðGÞ
∂Gn

� �2

ð10Þ

Because small changes in each realization of G will introduce small
changes in mQ, the variance in Eq. 10 is approximately linear for low
noise nG; however, the approximation becomes worse as nG becomes
large. By using the coefficient of determination (Eq. 8), we can express
the variance of a given sensor reading g in Eq. 10 as

s2ðgÞ ¼ VðQjG ¼ gÞ≃s2gð1� r2
φðq̂Þ;gÞN ∑

N

n¼1

∂mQðgÞ
∂gn

� �2

ð11Þ

Thus, s2(g) can be expressed as a function of s2gð1� r2
φðq̂Þ;gÞ.

In practice, we regress only on s2(g), assuming that the variable
is a piecewise continuous function of the explanatory variable ð1�
r2
φðq̂Þ;gÞ. We can also determine azimuth q̂ ¼ mQðgÞ for each mea-
surement g by the correlation coefficient rφðq̂Þ;g. That is, after each
observation, the recorded gain pattern is correlated against the model
φ(q) with regular phase offsets q, and the lag that corresponds to the
maximum correlation then gives the estimated angle of arrival; that is,
Eq. 7 becomes mQ(g) = arg maxq∈ [0,2p)rφ(q),g. This process of obtaining
Cliff et al., Sci. Robot. 3, eaat8409 (2018) 17 October 2018
an azimuth observation is illustrated on the left of Fig. 2, and example
likelihood functions from one trial can be seen in Fig. 3.

Range likelihood function
Next, we estimate the distance to the target using a Gaussian range-
error model where the set ZR ¼ fmRðGÞ; ŝ2

Rg. The range errors are
assumed to be logarithmic, as discussed below. Furthermore, unlike
the bearing observations, the scattergram in Fig. 2 does not indicate
that the noise is heteroscedastic, that is, the variance is constant for
each observation. This yields the likelihood function

ℓRðy; x; zRÞ ¼ f ðlogðdðx; yÞÞ; mRðgÞ; ŝR2Þ ð12Þ

In general, range measurements in cluttered environments can
be highly imprecise due to multipath interference. We anticipate the
vehicle to be deployed in similar environments and estimate the var-
iance under these conditions. Although the error in range measure-
ments can be substantial, including such observations is still useful.
Because the noise is homoscedastic, we can rely on range measure-
ments to provide an approximate location. The ability to focus on
an approximate location is particularly beneficial when the search area
would otherwise be expansive, such as in tracking scenarios where
there is little prior knowledge of the target’s location and when bearing
uncertainty is high.

We are interested in mapping the sensor output g to the distance
between transmitter and receiver. Because of atmospheric interactions,
the signal amplitude will decrease with range. We denote d(x, y) as the
Euclidean distance between our receiver x and the transmitter y. Then,
the received power pr is a function of the transmitted power pt and the
attenuation per meter a (47):

pr ¼ pte
adðx;yÞ ð13Þ

In Eq. 13, we have assumed that pr and pt take into account the link
budget, which characterizes all gains and losses in the telecommunication
system. Most of these components are fixed for a given system (e.g.,
transmitter and receiver losses); however, for adirectional antenna, the gain
relative to the average radiation intensity (the isotropic directivity) depends
on the immediate angle of arrival, fn. As a result, the RSSI values gn are a
function of the received power pr and angle of arrival fn. The isotropic
directivity is approximately constant if we take the maximum RSSI value
gmax = maxngn. Thus, we use the value gmax to estimate distance.

Now, let the true distance to the target be r* = d(x, y*) and its
estimate be a functionof g, that is,r̂ ¼ mRðgÞ. From the above discussion
andEq. 13, pr = p(gmax) for some linear function p:ℝ→ℝ.Moreover, r*
is a function of log p(gmax), and the Gaussian range-error assumption
may be expressed as

logr̂ ¼ logr� þ vR; vReN 0; s2R
� � ð14Þ

where s2R ¼ VðlogRÞ. We thus obtain the estimated range r̂ as

log r̂ ¼ mRðgÞ ¼ a�1ðlogpðgmaxÞ � logptÞ ð15Þ

The function mR(G) can be fitted to a first-degree polynomial func-
tion of log gmax. The variance s2R is estimated by the sample variance
5 of 10
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ŝ2
R ¼ s2R. The procedure for obtaining a Gaussian range-error observa-

tion is illustrated on the right of Fig. 2, and example range likelihood
functions can be seen in Fig. 3.

Combined likelihood function
The individual likelihood functionsmay be combined to obtain a range-
azimuth likelihood function ℓ(y; u), where Z ¼ fmQðGÞ; s2QðGÞ;
mRðGÞ; ŝ2

Rg. That is, assuming independent errors nQ and nR, the like-
lihood functions are multiplied pointwise (45), that is,

ℓðy; uÞ ¼ ℓQðy; x; zQÞ°ℓRðy; x; zRÞ ð16Þ

We tested the null hypothesis that these errors are independent by
computing the sample correlation coefficient. Because the errors are
assumed to be normal, the hypothesis was tested via a Student’s t
distribution with 95% confidence and 150 observations. The results
showed a correlation of rvQ;vR ¼ �0:08 ± 0:136, giving a confidence
of less than 66% that the errors are correlated. This result further
supports the heteroscedasticity assertion, that is, that poor-quality ob-
servations are not significantly correlated with distance.

Bayesian data fusion
Given the likelihood function in Eq. 16, we can combine numerous
observations to determine the most likely position of the target animal.
To achieve this, we use Bayesian data fusion, assuming independent
observations; this process is illustrated in Fig. 3.

By time t, we have obtained observations of the target animal at a
set of times 0 ≤ t1 … ≤ tk ≤ t. The above notation is extended to
include the observation number k. Denote Yk = Y(tk) as the target’s
location at time tk and, similarly, Zk = Z(tk) is the observation taken at
this time. Moreover, let Uk = {Xk, Zk}; denote the measurement process
as Z1:k = (Z1,…, Zk) and the values it takes on as z1:k = (z1, . . . , zk ). We
are ultimately interested in knowing the probability of the target’s state
after all K observations, that is, the posterior belief (36, 45),

pðtK ; yKÞ ¼ PrðYK ¼ yK jU1;K ¼ u1;KÞ ð17Þ

Further, we assume that the target can transition between obser-
vations such that yk = yk−1 + nY with nYeNð0; ∑YÞ for some co-
Cliff et al., Sci. Robot. 3, eaat8409 (2018) 17 October 2018
variance SY. This leads to the transition
density

qðykjyk�1Þ ¼ PrðYk ¼ ykj
Yk�1 ¼ yk�1Þ ð18Þ

Computing the posterior belief
(Eq. 17) becomes simpler if the process
(Y(t))t≥0 is assumed to be Markovian
and each observation Zk only depends on
Yk, that is,ℓðy1:K ; u1:KÞ ¼ ∏K

k¼1ℓðyk;ukÞ.
Because the likelihood function in
Eq. 16 is defined this way, recursive
Bayesian filtering (45) can be used to
update the belief. That is, the posterior
belief is computed as
p�ðtk; ykÞ ¼ ∫dyk�1qðykjyk�1Þpðtk�1; yk�1Þ ð19Þ

pðtk; ykÞ ¼ hℓðyk;ukÞp�ðtk; ykÞ ð20Þ

where h is a normalization constant such that ∫dykp(tk, yk) and ℓ(yk;
uk) is the likelihood function (Eq. 16). The first step, Eq. 19, gives a
motion update, and the second step, Eq. 20, gives the information
update to obtain a new belief of the target location (45).

Early approaches to recursive Bayesian filtering focused on
Gaussian implementations because of convenient analytical solutions
to computing the posterior belief in Eq. 17, for example, Kalman
filters (KFs) and extensions such as the unscented and extended
KFs. However, these methods are approximations to the non-
linear, non-Gaussian Bayesian filter (shown in Eqs. 19 and 20).
Grid-based filtering allows for resolution-complete recursive estima-
tion (45, 48) and can be computed in reasonable time over our work-
space. Thus, we represent our workspace S as an I × J grid in ℝ2.

The evolution model, Eq. 19, is functionally equivalent to Gaussian
convolution. Further, given our grid-based workspace S , this
convolution is simply a Gaussian blur, a spatial (low-pass) filter
commonly used in image processing. To efficiently implement this
model, we leverage results from computer vision for convolution
and use a separable Gaussian kernel of width 3|SY|.

Last, we require an estimate of the location of the target ŷk
given the posterior p(tk, yk). Two obvious choices are the expected
value of the posterior, E[Yk] = ∫dykykp(tk, yk), or the maximum a
posteriori probability (MAP) estimate, arg maxyk∈Spðtk; ykÞ. The
MAP estimate performed marginally better in preliminary trials;
however, in practice, the target does not remain stationary, and
so we instead maximize recursively over all posteriors:

ŷk ¼ arg max
u∈½1;kÞ;yu∈S

pðtu; yuÞ

In this way, the location estimate likelihood is strictly increasing.
Fig. 3. Example of our Bayesian data fusion method to obtain target estimates. The distributions shown are
spatially discrete grids over a 750-m2 area (with grid lines every 100 m for illustrative purposes only). (Left to right)
The bearing-only likelihood function ℓQ, the range-only likelihood function ℓR, the combined likelihood function ℓ,
and the posterior belief p(·). In each column, the first observation (k = 1) is shown in the bottom grid, the last
observation (k = 4) is at the top, and higher probability mass is represented as darker, raised regions. The UAV
location xk is indicated by a green dot, the target location y�k in purple, and the maximum likelihood estimate ŷk
in yellow.
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Decision-making by information gain
Our overall objective is to know where our target animal is and
with what certainty. Thus, the problem can be considered under the
framework of information gathering (36). To quantify uncertainty, we
use Shannon entropy, a standard measure for this purpose. The con-
ditional (Shannon) entropy of a random variable V, given another var-
iableW, quantifies the uncertainty over the outcomes of V in the context
of W; mathematically, this is given by H(V|W) = E[log Pr(V|W)].

In this context, we aim to choose a sequence u1:K = {x1:K, z1:K}
of state-measurement pairs such that the final entropy of the be-
lief H(YN) is minimized. That is, letting U ¼ ðS �HÞ and fixing
the measurement space H, the objective can be stated as

U*
1:K ¼ arg min

U1:K⊆U
EU1:K ½HðY1:KÞ� ð21Þ

where the posterior belief p(tk, yk) is a function of the robot po-
sition and measurements u1:k.

However, it is more convenient to consider the equivalent problem
of maximizing the information gain of each observation. LetY�

k be dis-
tributed according to the target belief after the motion update step, that
is, Eq. 19. The information gained in taking the actionUk = uk is quan-
tified by the mutual information IðYk;Y�

k Þ between the posterior and
the prior belief:

IðYk;Y
�
k Þ ¼ HðYkÞ � HðYkjY�

k Þ ð22Þ

Decomposing Eq. 22 using the chain rule, the entropyminimization
problem defined in Eq. 21 can be expressed as

U*
1:K ¼ arg max

U1:K⊆U
EU1:K HðY1Þ þ ∑

K

k¼2
IðYkY

�
k Þ

" #
ð23Þ

The objective of Eq. 23 is equivalent to entropyminimization and is,
in general, nonconvex and analytically intractable.However, themutual
information given in Eq. 22 is monotone submodular, and thus, the
quality of the solution provided by a greedy algorithm is at least 63%
of optimal (37). That is, given a deterministic greedy algorithm that
selects the action

Uk ¼ arg maxE
Uk∈U

½IðYk;Y
�
k Þ� ð24Þ

at each decision step, the resulting path û1 : K is within a constant factor
of optimal of the objective shown in Eq. 23, that is,

û1:K≥ 1� 1
e

� �
u*1:K ð25Þ

Furthermore, this is the most efficient algorithm to obtain such a
bound unless P = NP (37).

Optimizing each observation Uk is constrained in that only the
vehicle locations xk ⊂ uk can be selected and, consequently, only
the expected information gain at each sample s can be computed;
that is, we choose future waypoints xk such that

xk ¼ arg max
s∈S

E½IðYk;Y
�
k ÞjXk ¼ s� ð26Þ
Cliff et al., Sci. Robot. 3, eaat8409 (2018) 17 October 2018
As mentioned above, we assume independent errors in the like-
lihood functions shown in Eq. 16, giving Pr(Z) = Pr(ZQ) Pr(ZR).
However, even solving for independent priors requires inverting
all possible distributions at all sample locations s∈S; this is generally
intractable.

As an efficient alternative, we assume that the target location for
the next observation is the maximum likelihood position after the
motion update, that is,Yk ¼ ŷ�k . As a result, for a fixed viewpoint s,
the expected range measurement E½RjXk ¼ s;Yk ¼ ŷ�k � ¼ dðs; ŷ�k Þ
and expected bearing measurement E½QjXk ¼ s;Yk ¼ ŷ�k � ¼
bðs; ŷ�k Þ to the target are given. Moreover, the expected variance ŝ2

Q
is given by marginalizing out G such that ŝ2

Q ¼ E½s2QðGÞ�≃0:2 ra-
dian. In this case, the expected observation is a function of the
viewpoint s:

ẑkðsÞ ¼ fdðs; ŷ�k Þ; ŝ2
Q; bðs; ŷ�k Þ; ŝ

2
Rg

and the optimization over potential viewpoints s from Eq. 26 becomes

xk ¼ argmax
s∈S

IðZk ¼ ẑkðsÞ;Yk ¼ ŷ�k Þ ð27Þ

To reduce computation time, instead of sampling every location in
the workspace s∈S as indicated in Eq. 27, we simply sample a
uniformly distributed subset. Given the stochastic nature of observa-
tions, this does not appear to affect the quality of the planner.

Evaluating the performance of the system
To validate our approach in real field conditions, we compared the
performance of the robotic system to human tracker performance in
locating swift parrots in the wild. The box plot in Fig. 4 collates the
tracking performance from eight flights at four different sites near
Temora, New South Wales, Australia. The data for individual trials
are presented in table S1 for further detail. At each site, we obtained
the GPS trajectory of a novice and an expert tracker performing
manual wildlife telemetry. Once the human tracker had established
the true location y for the target through visual confirmation, the
UAV began its flight trial. The procedure for human trackers locating
the bird is provided in Materials and Methods. After confirmation of
the target by the human, a flight trial was performed for each type of
tracker (novice and expert). Thus, we obtained two tests of the robot
system at each site with a known true bird location.

For fair comparison, both the robot and the humans began trials
from the same initial coordinates, with the target animal location un-
known. This starting location was chosen such that the radio signal
was strong enough to bemeasured by the onboard payload. To quantify
performance, we compared the robotic tracker estimate ŷk with the
Euclidean distance between the GPS positions of human tracker and
the final ground truth y at time tk. Specifically, in Fig. 4, the y axis shows
(i) the error in the robot system’s target estimate ŷk for each observation
k (in green and blue) and (ii) the Euclidean distance between the human
tracker’s location at time tk and their final estimate (in white and gray).
The x-axis labels provide the observation number (e.g., observation 1)
and the time interval during which that observation was taken for all
flights (e.g., 46 to 60 s). Each data point in the box plot thus represents
an observation from one of the eight trials. In two of the flights, the final
location was uncertain because the bird moved during the flight and
visual confirmation was lost. The case where data from these two flights
were removed is labeled “Robot (certain)” (blue boxes).
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The results shown in Fig. 4 and table S1 indicate that the robot
was able to approximate the location of the target species in less
time than human trackers. Specifically, by the second observation (be-
tween 143 and 289 s), the robot successfully located the bird to within
55 m in five of the trials (see table S1). In each of these five trials, the
human tracker error was greater than the robots. Moreover, the final
position estimates show an average of 51.47 m and are obtained in
fewer than five observations (about 10 min). Table S1 indicates that
the observation error does not monotonically decrease over time (e.g.,
in trial 7). This is not surprising because of the various environmental
conditions that can cause observation noise; these include when the bird
moves during readings as well as strong winds interfering with the UAV
remaining stationary while spinning. In future work, we aim to be able
to detect these conditions to minimize the effect of such noise.

Ecological significance of trials
The quantitative data from our trials demonstrate the potential of
our system to shed light on the movements of small, highly mobile
animals such as swift parrots. The Temora region was chosen because,
based on a small number of sightings, it was assumed that numerous
swift parrots had migrated to the area in the weeks leading up to the
trial (see Materials and Methods). The results in this paper were ob-
tained over a 7-day trial in the region, and the posterior estimates
from all flights were aggregated to yield the heatmap shown in Fig. 5.
The figure shows that the flocks used two distinct areas for foraging
and roosting, including sites where the species had not previously been
recorded.

Swift parrots are small, critically endangered migratory birds that
depend on highly variable winter nectar resources. As a result, the
small population (less than 2000 birds) spreads across vast areas of
southeastern Australia each year in search of suitable food. Given their
small body and hence tag size, as well as their capacity for highly var-
iable and large movements, this species has not been successfully
radio-tracked.
DISCUSSION
In this paper, we validated that our customized aerial robot can be
used to perform autonomous wildlife tracking. We presented rig-
Cliff et al., Sci. Robot. 3, eaat8409 (2018) 17 October 2018
orous mathematical derivation of all
algorithmic components of the system,
including an approach to computing the
uncertainty of each bearing-only obser-
vation where heteroscedasticity is assumed.
By creating a high point wherever the
UAVwas launched, our system performed
comparably to, and often better than,
skilled humans in tracking the critically
endangered swift parrot (L. discolor).

Wildlife tracking is known to be an
important but difficult problem, and
tracking members of this species is par-
ticularly challenging because of their
small size and highly dynamic move-
ments. The ability of our system to track
such animals thus exemplifies the capa-
bility of robotic wildlife trackers and
the possibility of these systems to facili-
tate conservation management.
Although we performed this study within a landscape that is rela-
tively easy to traverse on foot (as discussed in Materials and Methods),
the greatest benefits of this aerial tracking technology are likely to be
realized within densely vegetated areas or rugged and dangerous land-
scapes. These situations require increased amounts of time and effort
on the ground to locate tagged animals (relative to flat terrain) but no
additional time or effort when tracking from the air. Tracking from
the air enables more frequent direct line of sight with the tags and
increases the likelihood of signal detection, which is a major challenge
when radio-tracking wildlife.

Although previous work showed that the presence of aerial vehicles
could disturb the target animals in some circumstances (49), we did
not observe any such disturbances. The birds appeared to be more
disturbed by the human tracker on the ground than by the robot
flying nearby. Whereas birds would often move between adjacent trees
when humans approached, they would often continue with observed
behaviors when the robot was flying nearby.

There are many avenues of inquiry for improving the system
hardware and decision-making algorithms. The signal detection range
of our current system is about 500 m; increasing this range is a good
target for further system hardware development. Algorithmically,
multirobot extensions and long time-horizon planning with travel
costs would allow for efficient search and tracking of numerous
animals simultaneously. The problem of multirobot wildlife telemetry
tracking has been partially addressed by designing optimal
information-gathering algorithms without considering travel cost
(19). However, these algorithms have yet to be used in real tracking
experiments. A recent approach to information gathering for decen-
tralized active perception allows for any general reward functions to
perform distributed optimization (50).

When studying fine-scale movement patterns (e.g., of highly dy-
namic animals), it is desirable to maintain real-time information about
individual trajectories. In robotics, this general problem is known as
persistent monitoring. Existing approaches, however, often seek to
maintain information about an entire, continuous environment (51)
rather than monitoring a small number of discrete features (e.g.,
birds). Recent approaches partitioned the environment into discrete
spatial locations and modeled the likelihood of observing birds by
using Poisson processes (52). Extensions to this model have been
0 [0-0] 1 [46-60] 2 [143-289] 3 [227-397] 4 [300-393] 5 [401-434]
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Fig. 4. Evaluating the performance of the robotic system through comparison with human trackers. We per-
formed two flights at each of four trial sites (eight flights in total). The box plot illustrates the estimate errors (on the
y axis) for both the robot (green and blue) and the human (white and gray) trackers as a function of the observation
number (on the x axis). The blue boxes labeled “Robot (certain)” indicate scenarios where the bird remained sta-
tionary during the trial and the final location was known.
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made where it is assumed that the presence of a robot interferes with
the animals’ behavior (53).
 by guest on A
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MATERIALS AND METHODS
Robot system
The aerial robot system used in this work was originally presented
in (22). We summarize key details here for convenience.

The system comprised a commercial eight-rotor UAV (Ascending
Technologies’ Falcon 8), custom antenna array, sensor payload, and
ground control station (GCS) laptop running ROS (54). All algorithmic
component implementations were executed on the GCS. A radio link
between the GCS and the UAV was allowed for telemetry and auton-
omous waypoint following.

The radio signal from each radio-tagged bird was received and
filtered by custom electronics onboard the UAV and transmitted to
the GCS (producing the sampled signal described in the “Observed
and expected sensor data” section). After each observation and sub-
sequent decision-making step, the GCS communicated a new way-
point to the UAV for autonomous navigation.

The design of our custom antenna array minimizes its vulnera-
bility to sources of interference generated by the robot. In our field
trials, we did not observe interference between the robot’s flight
systems and its receiver.

Experiments
Here, we present the procedure used to choose the survey location
and describe its terrain. We then briefly explain the manual and
robotic tracking procedures.

The trials were performed from 3 through 7 July 2017 in Temora,
New SouthWales, Australia. Before these trials, six birds were detected
by an experienced volunteer undertaking targeted surveys in the
surrounding Riverina region, where swift parrots are known to mi-
grate on a regular basis. Follow-up surveys were conducted by the
authors in late June, confirming that the survey location was suitable
Cliff et al., Sci. Robot. 3, eaat8409 (2018) 17 October 2018
for this trial by detecting at least 30 birds. By the end of August, at
least 200 swift parrots (10% of the global population) were detected in
the area. The study site is an open, grassy, Box Ironbark woodland and
thus relatively easy to traverse on foot. However, locating the birds was
often complicated by logistical issues, such as limited road accessibil-
ity, fence lines, and different land tenures, including private property.

For the trials, several birds were captured, and subsequently, a
BioTrack Pip Ag393 VHF radio tag was taped to their back feathers.
Each tag transmitted on a unique frequency within the 150- to 152-MHz
band that was preprogrammed into both the manual and the robotic
receiver systems. The tags emitted an on-off key modulated signal with
a pulse width of 10 ms and a period of 1.05 s. Moreover, they were
lightweight (about 2 g) and hence low-power (less than 1 mW) transmit-
ters due to the small size of the species. The use of the 150- to 152-MHz
band is permitted for wildlife tracking in Australia; in other countries,
alternative frequency bands could be used by retuning the receivers.

Manual tracking was undertaken by using a Titley Australis 26k
VHF radio receiver system and a Yagi three-element handheld direc-
tional antenna (shown earlier in Fig. 1). The approximate location of a
bird was identified by driving in an off-road–capable vehicle to differ-
ent sites until a radio signal was audible from the receiver. Once a
signal was detected, the tracker continued to point the antenna toward
the strongest (loudest) signal while walking through the landscape.
This procedure involved constant adjustment of the volume and the
gain of the receiver and continued until the bird was sighted. The GPS
trajectory followed by the manual tracker was recorded.

Once visual confirmation of a bird’s location was achieved, the
human tracker continued to observe the tagged bird to confirm the
exact location while the UAV was launched from the same starting
location as that of the human tracker. The UAV trajectory and raw
sensor data were recorded in real time and later replayed to generate
the figures reported. Each flight was performed at a constant altitude
of 75 m (such that the canopy was cleared), and each observation took
about 45 s to complete. For planning viewpoints, the UAV was con-
strained to choose locations within 300 m of the GCS (i.e., the starting
position) for the pilot to maintain visual line of sight.

For Bayesian data fusion, the workspace S � ℝ2 was discretized
into a square, 300-by-300 grid, that is, I = 300 and J = 300. Each cell
represented a 5 m–by–5 m area, and thus, the workspace extended
750 m in all cardinal directions from the GCS. We assumed a uniform
prior on the target location and evolution model covariance SY = sYI2,
where sY = 20 m.
SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/3/23/eaat8409/DC1
Table S1. Field trial data.
Movie S1. Flight demonstration.
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