
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/310798365

Adversarial Patrolling with Reactive Point Processes

Conference Paper · December 2016

CITATIONS

7
READS

185

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Bayesian Approaches to Increase Science Autonomy of Mobile Robots View project

Wildlife Drones - aerial radio-tracking excellence View project

Oliver Michael Cliff

The University of Sydney

23 PUBLICATIONS   219 CITATIONS   

SEE PROFILE

Robert Fitch

University of Technology Sydney

117 PUBLICATIONS   1,202 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Oliver Michael Cliff on 25 November 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/310798365_Adversarial_Patrolling_with_Reactive_Point_Processes?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/310798365_Adversarial_Patrolling_with_Reactive_Point_Processes?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Bayesian-Approaches-to-Increase-Science-Autonomy-of-Mobile-Robots?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Wildlife-Drones-aerial-radio-tracking-excellence?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver_Cliff?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver_Cliff?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Sydney?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver_Cliff?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Fitch2?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Fitch2?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Technology_Sydney2?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Fitch2?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver_Cliff?enrichId=rgreq-9c69d9a38984eb226c256f6e1dfd6efe-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5ODM2NTtBUzo0MzIxNDE0MTE1OTAxNDRAMTQ4MDA0MTk0OTMzOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Adversarial Patrolling with Reactive Point Processes

Benjamin Hefferan∗, Oliver M. Cliff†, Robert Fitch‡
∗School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney,

Sydney, NSW, Australia, bhef8151@uni.sydney.edu.au
†Australian Centre for Field Robotics, The University of Sydney,

Sydney, NSW, Australia, o.cliff@acfr.usyd.edu.au
‡Centre for Autonomous Systems, University of Technology Sydney,

Sydney, NSW, Australia, rfitch@uts.edu.au

Abstract

Adversarial patrolling is an algorithmic prob-
lem where a robot visits sites within a given
area so as to detect the presence of an adver-
sary. We formulate and solve a new variant of
this problem where intrusion events occur at
discrete locations and are assumed to be clus-
tered in time. Unlike related formulations, we
model the behaviour of the adversary using a
stochastic point process known as the reactive
point process, which naturally models tempo-
rally self-exciting events such as pest intrusion
and weed growth in agriculture. We present
an asymptotically optimal, anytime algorithm
based on Monte Carlo tree search that plans the
motion of a robot given a separate event detec-
tion system in order to regulate event propa-
gation at the sites it visits. We illustrate the
behaviour of our algorithm in simulation using
several scenarios, and compare its performance
to a lawnmower planning algorithm. Our re-
sults indicate that our formulation and solution
are promising in enabling practical applications
and further theoretical extensions.

1 Introduction

Patrolling is a task where an area must be continu-
ally monitored in order to detect undesirable events.
Applications of patrolling are broad and include secu-
rity surveillance, environmental monitoring for preda-
tors (such as shown in Fig. 1), and pest/weed control
in agriculture. Algorithmically, the patrolling problem
is to find a path, often a cycle, for a robot (or agent)
that maximises an objective related to the probability of
detection [Robin and Lacroix, 2016]. We are interested
in a variant known as adversarial patrolling, where the
behaviour of an adversary is affected by the actions of
the robot. We consider the case where the likelihood of
an event at a particular site increases contagiously over

Figure 1: A motivating example of pest monitoring to
minimise intrusion in a nature reserve. The surveillance
network is a set of cameras (red dots with field of view
(FOV) highlighted in yellow) to capture detection events.
Inset: fox detected by one of the surveillance cameras.
The task is to minimise fox intrusion by a robot visiting
the sites in the FOV of the cameras.

time when the robot is not present, and the action of a
robot in making an observation reduces the likelihood of
event occurrence at that site. Our objective is to plan a
path that minimises the expected number of undesirable
events within an area.

Patrolling problems are often studied in the non-
adversarial case where events are independent [Smith
and Rus, 2010; Yu et al., 2014; 2015]. This model
is useful for maintaining currency or minimising time-
to-detect, but does not account for time-varying event
likelihoods. Self-exciting point processes, such as the
Hawkes process [Hawkes, 1971], are appealing in this re-
gard because they naturally model phenomena that are
locally contagious and form spatial and temporal clus-
ters of events, e.g., criminal activity [Mohler et al., 2012].
However, these models do not account for the adversarial
scenario where an agent interacts with the environment.

Our approach is to employ reactive point processes
(RPPs) in the context of adversarial patrolling [Ertekin



et al., 2015]. Unlike standard self-exciting point pro-
cesses, the advantage of the RPP model is the ability
to incorporate both the self-exciting nature of events
and self-regulating property of making an observation.
RPPs were originally developed within the domain of
electrical grid reliability to predict catastrophic failures
in the presence of inspection events [Ertekin et al., 2015];
however, this general model is applicable to a broad
spectrum of complex systems often studied in patrolling
problems. In particular, we formulate our problem un-
der the assumption that a fixed sensor network detects
events, and a mobile robot patrols to regulate these
events (decreases event vulnerability).

Given an RPP model, finding a path that optimises
our objective is also challenging. Making an observation
decreases the event likelihood at a site, but the benefit
of a given observation is not fully known at the time it is
made. Future observations at the same site can mitigate
the effect of previous observations. A Markov decision
process (MDP) formulation, for example, would include
the event likelihood at each site as part of its state space,
leading to large problem sizes for reasonably sized areas.

We present a planning algorithm based on Monte
Carlo tree search (MCTS), a well-known algorithm used
successfully in game AI [Silver et al., 2016]. MCTS
handles large state spaces by estimating action values
through Monte Carlo sampling [Browne et al., 2012].
We formulate the adversarial patrolling problem such
that MCTS can be applied, and its convergence prop-
erties are retained. Simulation results demonstrate the
useful behaviour of our algorithm in two scenarios, in-
cluding comparison with myopic information-gain-style
planning.

The contribution of this work is a novel problem for-
mulation for adversarial patrolling with reactive self-
excitation, and an asymptotically optimal and anytime
planning algorithm for this problem. The significance
of our work is to enable new applications of robots in
a range of patrolling tasks where events cluster in time,
including pest monitoring and adaptive weed control.

2 Related work

The problem of continuously monitoring (or patrolling)
targets of interest is a cross-disciplinary research topic
with numerous definitions depending on the particu-
lar task. The motivation for studying these prob-
lems can vary from crime prevention [Kartal et al.,
2015] to environmental monitoring [Smith et al., 2011;
Cliff et al., 2015]. Given the broad scope of this problem,
we will restrict our attention to problems cast as either
continuous sweep coverage, combinatorial optimisation,
or adversarial patrolling algorithms.

The aim of sweep coverage planning is to maximise
environment coverage using a mobile sensor. The prob-

lem definition can be to cover fixed, discrete locations,
e.g., where the areas of interest remain constant and the
goal is to find a tour that maintains currency of infor-
mation [Smith and Rus, 2010], or continuous coverage
problems, e.g., in the existence of sharply temporal co-
variant environment [Garg and Ayanian, 2014]. Tasks
such as mission monitoring can be cast as a spatiotempo-
ral optimal stopping problem where the agent maintains
a stochastic model of the target [Best et al., 2015].

Another promising approach for patrolling is to use
techniques from combinatorial optimisation to find a
path for the robot through the environment that max-
imises some criteria. When These approaches typi-
cally draw on classical results from the travelling sales-
man problem [Alamdari et al., 2014; Yu et al., 2015],
the travelling repairman problem [Afrati et al., 1986;
Tulabandhula et al., 2011], and the vehicle routing prob-
lem [Stump and Michael, 2011] (with dynamic and
stochastic demands [Bertsimas and Van Ryzin, 1991;
Novoa and Storer, 2009; Pillac et al., 2013]). For ex-
ample, Bopardikar et al. [Bopardikar et al., 2014] find
an optimal solution to the vehicle routing problem with
stochastic demands and time constants assuming de-
mands arrive as per a known Poisson distribution. How-
ever, the main focus of this literature is typically to con-
sider the arrivals of events and demands as spatiotem-
porally independent.

In this work, we consider an adversary that identi-
fies vulnerable areas of the environment as ones that
have been visited recently. However, it is common to as-
sume the adversary takes one of two general policies:
semi-random movements or reacting optimally to the
patrolling agent (i.e., worst-case scenarios) [Robin and
Lacroix, 2016]. Notably, Agmon et al. develop theo-
retical penetration bounds for static and stochastic in-
truders on many different environment types assuming
the intruder attempts to penetrate the weakest point in
the patrol [Agmon et al., 2011]. Similarly, Kartal et
al. modified MCTS to allow cycles in order to ‘capture’
an intruder that arrives and departs the environment
randomly, performing random movements during the in-
trusion [Kartal et al., 2015]. The problem we consider
resides between these two extremes as the adversary’s
policy is neither explicitly modelled, nor considered com-
pletely random; the RPP models complex macroscopic
behaviour by assuming a contagious nature of events.

3 Background and problem statement

In this section, we formally introduce the RPP, a doubly
stochastic point process. We then define the problem of
adversarial patrolling for events modelled by RPPs.



3.1 The reactive point process (RPP)

A temporal point process is a random process with a re-
alisation consisting of a list of discrete events localised
in time, (tm)m∈N∗ ∈ R+. The temporal point process is
therefore a counting process Nt =

∑
m∈Z+ 1tm<t, that

records the number of events before time t. The left-
continuous conditional process λt captures the probabil-
ity of occurrence of a new event adapted to a filtration
Ft (i.e., the amount of information available up to time
t) [Daley and Vere-Jones, 2007]. The intensity is there-
fore defined as

λt = lim
∆→0

∆−1E[Nt+∆t −Nt | Ft]. (1)

For brevity, we omit the dependence on filtration Ft in
notation unless necessary.

The most common point process is the Poisson pro-
cess, which is memoryless and thus characterises pro-
cesses that are independent of prior information Ft (ho-
mogeneity), however can be dynamic in time (inhomo-
geneity). That is, durations (tm)m∈N∗ of a homogeneous
Poisson process are i.i.d. as an exponential distribution
with rate parameter λt. The Poisson process is thus com-
monly used to model non-adversarial patrolling prob-
lems, where the events are considered independent (see
Sec. 2). In this work we consider an adversarial process,
where the adversary is more likely to attack areas that
were previously vulnerable. As a result, we consider the
Hawkes process to model adversaries.

The Hawkes process is a self-exciting point process
model that has been used to model a number of relevant
phenomena, e.g., earthquakes [Ogata, 1998], criminal ac-
tivity [Mohler et al., 2012], and financial data [Bacry
et al., 2015]. In its general form, the process captures
the mutual excitation phenomena between events. For
a K-variate Hawkes process, the couples {tm, km}Mm=1,
where tm denotes the time of event number m and
km ∈ [1, . . . ,K] indicates its component, the intensity
is computed as [Bacry et al., 2015]

λit = µi +
∑
tm<t

φi,km(t− tm). (2)

Thus each component of the process i can be coupled to
any other component; however, in this work we assume
each component is independent and thus remove the in-
dex km. The exponential kernel for the Hawkes process
was originally defined as φ(t) =

∑P
j=1 αje

−βjt1R+ for

some order P [Hawkes, 1971].
However, the self-exciting point process defined in (2)

is insufficient for patrolling. We model the behaviour of
the adversary as less likely to attack a given area once it
has been visited (e.g., on a patrol beat). Thus, we use
the RPP model, where the intensity is given by [Ertekin

Figure 2: The RPP model; events (red bars) are tempo-
rally contagious, where one event will increase the vul-
nerability of another happening due to the self-exciting
property; this likelihood then tempers over time to a
base value. Once an observation (blue bar) is made,
there is an instantaneous decrease in vulnerability due
to the self-regulating property of the process.

et al., 2015]

λit = µi

[
1 + gi1

(∑
tm<t

φi(t− tm)

)

+gi2

∑
t̄n<t

ψi(t− t̄n)

+ C11[NE≥1]

 (3)

The RPP was initially used to predict power failures in
underground electrical systems, whereby a failure excites
the event likelihood and an inspection regulates it. We
use the functions and kernels defined in the original set-
ting of manhole inspection,

gi1(ω) = ai1

(
1− log(1− e−bi1ω)

log(2)

)
,

φi(t) =
1

1 + eβit
,

gi2(ω) = ai2

(
1− log(1− ebi2ω)

log(2)

)
,

ψi(t) =
−1

1 + eγit

The RPP formulation includes saturation functions g1

and g2 on top of the standard self-exciting and self
regulating properties which prevent the intensity from
reaching unrealistic values under the self-exciting or self-
regulating actions.

3.2 Problem statement

We study the problem of adversarial patrolling un-
der the framework of MDPs. An MDP is a 5-tuple



(S,A,Pass′ ,Rass′ , γ) where S is the set of states; A is
the set of actions; Pass′ = Pr(sn+1 = s′ | sn = s, an = a)
is the transition probability for moving to state s′ from
state s by action a; Rass′ = E[rn+1 | sn = s, an = a]
is the reward function for a state transition; and γ is a
discount factor. The goal of the MDP is to choose a pol-
icy an = π(sn) (i.e., a map from states to actions) that
maximises the discounted return RT for some horizon T .

We consider a discrete, graph-based representation of
places (targets) of interest that have been a priori ab-
stracted from the environment. A graph G = (V, E) is
characterised by a node set V = {v1, v2, . . . , vK} and
edge set E ⊆ V×V. Each edge in the edge set is denoted
eij to denote the edge between node vi and vj . The
environment (graph) can be considered to be a multi-
variate RPP, where each node vi will have an associated
intensity λit. We assume that node intensities are known
at each decision point. This assumption is motivated
by practical situations, e.g., where a surveillance system
(e.g., cameras) is available and the role of the robot is
interventional.

Let the state sn = (vn, t, {E[λit]}) at decision index
n comprise the node the agent is currently at vn ∈
V, the decision time t, and the expected intensities
{E[λ1

t ],E[λ2
t ], . . . ,E[λKt ]} of all nodes at the decision time

t. We allow the agent to move to any node excluding the
state node an ∈ V \ vn. Denote E[N i

t ] as the number of
events at node vi assuming no interaction with the en-
vironment, and Eπ[N i

t ] the expected number of events
when following policy π (i.e., inspecting a node accord-
ing to π). We then wish to minimise the total number of
events that will occur, i.e., maximise the return at time t

RT = 1−
∑K
i=1 Eπ[N i

t+T −N i
t | Ft]∑K

i=1 E[N i
t+T −N i

t | Ft]
, (4)

4 Planning algorithm

We propose to use MCTS as an anytime planning algo-
rithm for finding the optimal action from the root node.
Using the UCT child selection policy, the algorithm pro-
posed is both asymptotically optimal and anytime.

4.1 Monte Carlo tree search

The goal of an MDP is to select an optimal (one-step) ac-
tion. To achieve this, we employ MCTS, which performs
random rollouts by Monte Carlo sampling to determine
an optimal action from a root node, given a black box
simulator of the environment [Browne et al., 2012]. The
four main stages of the MCTS algorithm are node se-
lection, expansion, simulation and back-propogation (or
backup), as illustrated in Fig. 3.

Node selection The node selection step chooses an
unvisited leaf node of the tree. This node is determined

Select Expand Simulate

Xit

Backup

Figure 3: The four main stages in the MCTS algorithm:
node selection, expansion, simulation, and backup.

by a UCT search from the root node in which the selec-
tion of each child node form the current node is consid-
ered to be an independent mulit-armed bandit problem
[Kocsis and Szepesvári, 2006]. The expected benefit of
expanding a child node is determined using the UCT al-
gorithm where the expected reward for each child node
is given by

UCT = R̄j + 2Cp

√
2 lnn

nj

where R̄j is the average return of patrolling policies (4)
passing through this node, nj is the number of times
the child has been previously visited and n is number of
time the parent(current) node has been visited. The tree
policy terminates when a node with unexplored children
is reached.

Expansion Once a node is selected as described above,
a child node is added corresponding to randomly selected
available action form this state that has not been pre-
viously added to the tree. From this newly added node
a default policy is applied to guide the actions taken by
the robot while searching the graph. In this case ran-
dom actions are selected from a list of possible actions
for each state [Browne et al., 2012].

Simulation The aim of the simulation stage of MCTS
is to determine the utility of a possible action sequence
that the agent could take. From Eq. (1), the expected
number of events in (4) is given by integrating the inten-
sity, i.e.,

E[NT −Nt | Ft] =

∫ T

u=t

E[λu | Ft].

Thus, we can calculate the reward in (4) by either inte-
grating (3) or sampling the number of events with and
without interacting with the environment. As analytic
solutions to the integrated intensity are difficult to find,



we will use the observed number of events as an approx-
imation to this integral. This approximation only holds
while the number of events is large and thus in cases
where the number of events is small, a numeric integra-
tion is performed on the conditional intensity function.

Once a node has been selected the expected reward
RT is calculated for this state. This is often achieved by
applying default (rollout) policy until a terminal state
is reached in which the outcome can be evaluated and
a reward calculated. As patrolling is a task with no
inherent end, a different approach is needed. In order
to evaluate the expected reward, the default policy is
applied up to a fixed horizon [Samothrakis et al., 2011]

time after which the reward for the rollout is calculated.

The reward is calculated by simulating the point pro-
cesses (events) for all nodes in the environment using
thinning algorithms [Ogata, 1981]. These procedures can
be used to simulate any point process that is fully defined
by a conditional intensity function. To perform the roll-
out, the simulation is generated from the decision time
(i.e., the root state) of the search tree sn. The simulation
is conducted for the case with and without any robot in-
tervention in the system. Inspections are considered to
occur when the robot arrives at a location. The inspec-
tion times applied in the simulation include environment
nodes visited during the tree walk nodes visited during
the default policy. The reward RT is calculated from
the resulting process intensity from the decision time up
until the simulation horizon time.

Back propagation Once a reward has been calcu-
lated, it is back propagated up the search tree. The
expected reward is added to the average empirical re-
ward R̄j of the expanded node and all of its ancestors
up to the root node and the visit count of all nodes nj
on this path incremented. This then informs subsequent
UCT searches guiding the tree exploration and expan-
sion towards regions of the action space expected to be
of highest utility to the agent.

Action selection Once the allotted budget for the
tree search has been consumed an action is selected by
consulting the children of the root node of the tree. Ac-
tion corresponding the most valuable child is then se-
lected as the next action of the robot using the ‘max
child’ criteria [Browne et al., 2012]. Once an action has
been selected the agent state is updated and the same
simulation method is used to generate the environment
processes up to the time the agent arrives at its next lo-
cation at which time a the next decision making process
begins.

A

B

C

(a)

(b)

Figure 4: Experimental validation with the three node
environment. Figure (4a) illustrates the environment
structure: two adjacent nodes, one with high inten-
sity and one with low, and a third, further away node
with low intensity. Figure (4b) illustrates the number of
events as a function of the computational budget. The
number of events are shown for MCTS (error bar), ran-
dom movements (dashed line) and without intervention
(dotted line).

4.2 Analysis

The planning algorithm is a specific implementation of
the UCT algorithm [Browne et al., 2012], and thus guar-
antees the bias at the root node converges at a rate
O(log(n)/n), where n is the number of rollouts. The only
assumption for convergence of UCT is that the empiri-
cal averages converge. We can guarantee convergence of
the mean values given the expected intensity is bounded,
which is the case for RPP’s due to saturation functions
g1 and g2. In addition, the algorithm is anytime in that
we can terminate the MCTS prior to convergence of the
root node, where the agent selects the action that has
the highest empirical average.

5 Experimental validation

In the previous section, we showed that the algorithm
is asymptotically optimal and anytime. Thus, the main
goal of this section is to both quantitatively and qualita-
tively validate the behaviour of the planning algorithm
introduced above in simple but expressive toy environ-
ments.

Firstly, we validate the planning algorithm on a sim-
ple, three node graph (K = 3) shown in Fig. 4a. The



Figure 5: Path chosen by the MCTS planner in a trial
on the three node graph. Horizontal dashed lines indi-
cate the baseline rates of the three processes (nodes A,B
and C) and solid lines show the process intensities. The
magenta (dotted) line indicates the path chosen by the
planner with circles indicating inspection times for each
of the processes.

graph is designed such that two nodes (leftmost nodes in
Fig. 4a) are placed adjacent to one another (0.1 units),
where one node has high and the other low expected
intensity. The rightmost node is situated further away
(2 units) from this cluster, and given low expected in-
tensity. In general, the agent performed an oscillating
policy, where the two leftmost nodes were visited fre-
quency, and the right node was visited at a significantly
lower frequency as in Fig. 5. In addition, we show in
Fig. 4b that increasing the computation budget signifi-
cantly improves the performance of the planner. With
a shorter budget, the planner effectively acts greedily.
We also compare the performance of the planner with
a random planner (effectively setting the horizon to 0)
and base expected intensity (i.e., where there is no in-
tervention from the agent at all). Increasing the plan-
ning horizon and budget demonstrates the asymptotic
behaviour of the planner, and a comparison with the
base cases illustrates the effectiveness of the optimal pol-
icy. Our next experiment, shown in Fig. (6) exemplifies
the performance of the MCTS planning for non-uniform
environments. We are interested in the utility of the al-
gorithm as the number of events at each node becomes
more varied, which we quantify with a measure termed
event diversity. Event diversity is given by the standard
deviation of the number of events at each node without
intervention. To study this, we use a 16-node (K = 16)
grid-world environment, illustrated in Fig. 6a. A naive
coverage planner for these types of environments is to
sweep the environment in a lawnmower style pattern.
Thus, we contrast the MCTS algorithm with both a ran-
dom and a lawnmower-style planner for validation. As
illustrated in Fig. 6a, the event diversity is varied over
a number of trials, and the number of events are cap-
tured for each trial and planner. The graph in Fig. (6b)

shows that the number of events using the MCTS plan-
ner decreases with the baseline, whereas the events for
random and lawnmower planners remain relatively con-
stant. The improved performance of the MCTS algo-
rithm is given by the ability to react to the processes
instantaneous event probability (as an active planner).

When normalised to the base intensity of the environ-
ment (i.e. without any inspections), both random and
lawnmower paths display approximately constant utility
while the utility of the MCTS planner is seen to increase
as the environment diversity increases for this environ-
ment.
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Figure 6: Grid scenario used for experimental evalua-
tion. The processes governing the grid were changed
to vary the event diversity, i.e., how uniform the ex-
pected number of events were across the entire graph.
In Fig. 6a the relative size of each node represents the
average intensity across a trial, and the shade denotes
three separate trials to illustrate which nodes were var-
ied. Figure 6a illustrates the number of events plotted
against event diversity without intervention (dash-dot
line), with random movements (dashed line), with the
lawnmower pattern (dotted line), and with MCTS (solid
line).



6 Discussion and future work

We presented a novel formulation of adversarial pa-
trolling, where intrusion events occur at discrete loca-
tions and are assumed to be clustered in time. An
asymptotically optimal and anytime planning algorithm
was then developed to solve this problem. We then val-
idated the planning algorithm’s performance both qual-
itatively and quantitatively by considering a number of
environments.

There is broad scope for future work to consider for
this type of problem formulation. We are currently in-
vestigating applying the model to a real system for pest
monitoring problem (see Fig. 1) where the RPP param-
eters are learned from interventional data. Furthermore,
a natural extension to this problem are multivariate
RPPs [Bacry et al., 2015], which are capable of capturing
both temporally and spatially clustered events however
would require additional structure learning procedures
for these types of dynamical systems [Cliff et al., 2016].
Finally, two important lines of inquiry are multi-robot
decentralised planning [Best et al., 2016] and partial ob-
servability (e.g., as a partially observable MDP [Silver
and Veness, 2010]).
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