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We examine salient trends of influenza pandemics in Australia, a rapidly urbanizing nation. To do so, we implement
state-of-the-art influenza transmission and progression models within a large-scale stochastic computer simulation,
generated using comprehensive Australian census datasets from 2006, 2011, and 2016. Our results offer a simulation-
based investigationof apopulation’s sensitivity topandemics acrossmultiple historical timepoints andhighlight three
notable trends in pandemic patterns over the years: increased peak prevalence, faster spreading rates, and decreasing
spatiotemporal bimodality. We attribute these pandemic trends to increases in two key quantities indicative of urban-
ization: the population fraction residing in major cities and international air traffic. In addition, we identify features of
the pandemic’s geographic spread thatwe attribute to changes in the commutermobility network. The generic nature
of ourmodel and the ubiquity of urbanization trends around theworldmake it likely for our results to be applicable in
other rapidly urbanizing nations.
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INTRODUCTION
The global population is both highly urbanized and rapidly urbanizing,
with people around the world flocking to cities more quickly every year
since 1950 (1). This critical trend has inspired a vigorous research effort
toward understanding the economic, environmental, and social impli-
cations of global urbanization (2–4). To further this effort, we present
findings on the relationship between urbanization trends and pandemic
influenza sensitivity.

In general, urbanization is known to worsen epidemics through a
variety of mechanisms. In developing nations, this is well documented
and is associated with high-density living conditions combined with
concentrated poverty and poor sanitation (5). In the developed world,
where urban living has been the norm for the last century, the direct
effects of further population concentration into cities on potential pan-
demic dynamics are less obvious. The concentration of health care fa-
cilities, combined with increased economic opportunities, tends to
increase the general quality of public health (6). However, with respect
to communicable disease, the concentration of the workforce in central
business districts, combined with suburban sprawl, can produce large
hubs in the commuter interaction network that could potentially lead
to faster proliferation of infectious disease betweenwork andhome (7, 8).
In addition, city growth is coupled to increased air traffic and con-
nectivity, which could be expected to increase both the probability of in-
tercity disease spread and the potential for the disease to arrive from
overseas because of international traffic (9).

Our study focuses on Australia, a highly urbanized nation for which
comprehensive census data spanning the last decade have been made
publicly available. We used these data to calibrate a nation-level model
of pandemic influenza spread and to investigate the surrogate popula-
tion’s vulnerability to the contagion over a period of rapid urbanization.

Australia has a total urban population fraction of about 90%, with
more than half of the country’s population located within only a few
urban centers. Over time, this trend has led to substantial infrastructural
stress, including increased health care economic burden. In particular,
the cost of influenza in Australia is estimated to be between AU$828
andAU$884million annually (10). Rapidly escalating epidemics direct-
ly affect other aspects of life. Individual behavior changes, and the
resilience of critical infrastructure is called into question (11, 12). Im-
pacts are quickly seen also in labor supply and productivity, in the
movement of goods and services across regions, and in the sustainability
of consumer and investor confidence. Arguably themost acute aspect of
an epidemic or pandemic crisis is the strain on medical infrastructure.
In the last decade, Australia’s hospital beds have beenmaintained at ap-
proximately 2.5 per 1000 individuals, leading major hospitals to regu-
larly operate from 90 to 100% or higher capacity. The Australian
Medical Association has assessed the condition as unacceptable, but
hospital capacity continues to lag behind demand (13). Because of the
constant (low) per-capita bed numbers and the country’s aging popu-
lation, any relative increases in disease prevalence are substantial from the
perspective of hospital overcrowding and the related adverse health out-
comes for patients and staff, including increased patient mortality (14).

Despite its relative isolation, Australia was not spared from the
H1N1 influenza (“swine flu”) pandemic in 2009 (15). Since then,
the prevalence of seasonal influenza in Australia has been increasing
on average. The country experienced a particularly severe season in
2017, with levels approaching those of 2009 (16). To make matters
worse, a recent analysis has assessed Australia’s pandemic prepared-
ness as sorely lacking (17). On the basis of these general trends, we can
expect future pandemics to bemore damaging. Ourmotivation for the
present study is the prospect of linking long-term structural and social
trends to Australia’s apparently increasing susceptibility to contagion
(in this case, the influenza virus).

There are many existing methods and tools for modeling epi-
demics and assisting in crisis response and preparedness planning
(7, 18). However, none has been used to provide a high-resolution
comparative analysis of pandemic trends across multiple historical
time points. Here, we accomplish this by simulating the spread of in-
fluenza through a stochastically generated population mimicking the
Australian Bureau of Statistics (ABS) censuses of 2006, 2011, and 2016.
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We conduct our simulations at the community and national level in a
way that rigorously accounts for salient features of the contagion, such
as prevalence dynamics and spatiotemporal structure. This approach
allows us to investigate the role of the slowly evolving population
distribution and social interaction network over which the virus
spreads, independently of the viral characteristics. Such a separation
of contagion and population properties is impossible in field studies be-
cause both are intrinsically dynamic (19).

Our results highlight three notable trends in epidemic patterns over
the years, which are independent of the specific simulation parameters
defining the influenza virus: (i) increased peak prevalence, (ii) faster
spreading rates (earlier epidemic peak), and (iii) decreasing spatio-
temporal bimodality. These results have important implications: The
first point predicts increased intensity of health crises in infrastructural
terms, with more people simultaneously expressing flu symptoms dur-
ing the peak of the epidemic; the second point indicates shorter periods
during which detection and response strategies would have to be imple-
mented for effective mitigation; and the third point pertains to the bi-
modal character of the epidemic, which occurs in two waves—the first
in cities near international airports (where the pandemic is introduced)
and the second in rural areas and cities without international airports.
In this case, decreasing bimodality occurs as the first mode subsumes
the second, contributing to the severity of the epidemic at its peak.

Bimodal H1N1 outbreaks were observed around the world during
the 2009 global H1N1 pandemic (20–24). However, despite its ubiquity,
the mechanisms behind bimodality remain elusive. Although commu-
nity network topology has been suggested as an important potential
cause (25, 26), the confluence of environmental factors and sporadic
interventions makes it impossible to isolate the effects of community
structure. In addition, bimodal epidemics have not been observed in
previous simulation studies based on real-world mobility networks
and disease characteristics [see, for example, (27, 28)].
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SUMMARY OF METHODS
In general terms, our simulation strategy is similar to others in the lit-
erature (28–30) and is based primarily on a model that is the subject of
our previous publication, calibrated to the Australian demographics
and mobility (31). For the present work, we made several minor im-
provements to the process by which the sample population is generated
(these are summarized in Methods).

We initialize ourmodel by creating stochastically generated sample
populations for each year based on Australian census data from 2006,
2011, and 2016. For each year, we then simulate scenarios inwhich the
pandemic reaches Australia from overseas, continuously seeding the
epidemic within 50 km of international airports with probability pro-
portional to the average number of incoming passengers at the
corresponding airport. The simulation continues for 180 “days,” each
with daytime and nighttime components during which individuals in-
teract at workplaces and within residential communities, respectively.
Here, continuous seedingmeans that we infect people at random in the
seeding regions at the beginning of each day of the simulation,
providing a small but continuous streamof new infections from abroad.

The disease then spreads in households, neighborhoods, schools,
and workplaces based on the disease progression and transmission
models validated in our previous work (31). These models are similar
to those developed for other countries (29, 32), with transmission prob-
ability dependent on context (location anddemographics) and infection
status (viral titers and symptom expression). Whenever possible, rela-
Zachreson et al., Sci. Adv. 2018;4 : eaau5294 12 December 2018
tive transmission and contact probabilities were derived from field
studies (27, 28).

For the results reported here, we set the transmissibility of the disease
to achieve a basic reproductive ratio Ro = 2 (calibrated for 2006) and
held all parameters constant while varying the demographic inputs
(33). All results were averaged over five different sample populations
for each year, with 30 pandemic instances each, for a total of 150 pan-
demic instances for each year. Results for other Ro values, along with
standard deviations (SDs) of incidence, prevalence, and attack rate,
are shown in figs. S1 to S3. (Note that because of the stochastic nature
of our seeding protocol, there is a low probability that the contagionwill
not spread in the population, giving prevalence values near zero. In our
entire set of simulations, this occurred a total of three times: once for the
2006 population with Ro = 2, once for the 2006 population with Ro =
1.25, and once for the 2011 population with Ro = 1. For the results
presented, these three instances were omitted in the analysis).
RESULTS AND DISCUSSION
Our results indicate a concerning progression in the population’s re-
sponse to pandemic influenza since 2006. The character of this progres-
sion is shown by several metrics in Fig. 1. The incidence (number of
newly symptomatic individuals) on each day of our simulated epi-
demics is shown in Fig. 1A and indicates a steadily increasing peak in-
fection rate. The total prevalence (number of symptomatic individuals)
in the population as a function of time is shown in Fig. 1B and illustrates
a corresponding trend in peak prevalence. The accumulated attack rate
(total number of people affected) in Fig. 1C shows only minor changes
in the total proportion of people infected, despite the shifts to larger,
earlier epidemic peaks. The progressions of peak day and peak preva-
lence are given in Fig. 1D.

At first glance, the stability in overall attack rate (Fig. 1C) looks
reassuring. This implies that the social network of Australia is not
changing in a way that leads to a larger percentage of people becoming
exposed to potential infection. A pessimistic but realistic explanation
for this result is that almost everyone in the simulation is eventually
exposed to potential infection in all years. Regardless of the explana-
tion for consistent attack rates, the change in shape of the incidence
and prevalence curves leads to some concerning implications. Two of
these are illustrated in Fig. 1D, which traces a correlation between ear-
lier peak days (delay between epidemic onset and peak prevalence)
and greater peak prevalence. These results indicate that the virus is
spreading more quickly in the population, leading to greater stress
on the medical infrastructure and shorter periods of time to respond
after the disease is detected.

For Australia, no empirical estimates exist for the probability of
hospitalization, given pandemic influenza infection, because the
2009 H1N1 clinical attack rate is unknown. However, on the basis
of the documented absolute number of 4855 hospitalized cases in
2009, we can estimate the hospitalization probability, given infection,
for a reasonable range of attack rate values. Bounding the estimated
2009 attack rate between 10 and 40% translates to hospitalization rates
of 0.22 and 0.056% in the infected population, respectively. Applying
these rates to our incidence curves in 2006 and 2016, we estimate the
10-year increase in the number of additional hospitalizations during
the peak 3 weeks of the pandemic to be in the range between 664 and
2658. Both of these numbers are large enough to contribute substan-
tial stress to emergency departments across the country and would
represent a notable increase in hospitalizations due to influenza. In
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reality, real hospitalization rates depend enormously on the symp-
tom severity associated with the strain and on the levels of pre-
existing respiratory health conditions in the population, neither of
which is treated explicitly in our model.

In all years, the model output shows strong bimodality in the histo-
gram of local peak prevalence dates, which corresponds to a transition
from an initial wave in urban regions with seeding locations around in-
ternational airports to a second wave affecting areas not directly
connected to these seed regions (Fig. 2). This bimodality is apparent
on the level of Statistical Area level 2 (SA2) regions (see the maps in
Fig. 2). In 2006, the initial wave is confined almost exclusively to major
cities and the surrounding suburbs. In subsequent years, the trend is an
increasing number of rural regions peaking in the first wave. [Note that
SA2 is analogous to the Statistical Local Area partitions used in 2006
and earlier years. The hierarchy of partitions used for the 2006, 2011,
and 2016 censuses can all be viewed on the ABS website (34)].

Bimodality is also detectable on the state level. For example, compar-
ing the 2006 total incidence in New SouthWales (which is home to the
largest international airport, located in Sydney) to that of SouthAustralia
(which receives lower levels of international traffic) indicates, un-
surprisingly, that states with large international airports tend to contrib-
ute to the initial wave, while the states with lower international traffic are
affected later and contribute to the second wave (Fig. 3A). The bimodal
dynamics are acutely visible in time series of regional prevalence (please
refer to movies S1 to S3 for dynamic visualizations of disease spread).
Zachreson et al., Sci. Adv. 2018;4 : eaau5294 12 December 2018
To quantify the progression of the bimodal character that is qual-
itatively observed in Fig. 2, we fit the prevalence data for each year to
pairs of Gaussian curves corresponding to the first and second epi-
demic waves (c2 = [6.63, 6.62, 26.7] × 10−6 for 2006, 2011, and 2016,
respectively). This fitting procedure is illustrated for 2016 in Fig. 3B,
while the trends in interpeak separation and peak aspect ratio (the
ratio of peak height and SD) are shown in Fig. 3C. These indicate pro-
gressive sharpening of the first wave and broadening of the second
wave. This trend corresponds to an increased separation of the two
peaks, which also manifests as an overall decrease in geographic syn-
chrony: [0.071, 0.057, 0.052] d−1 for 2006, 2011, and 2016, respectively
(quantified here as the reciprocal SDs of the histograms of local peak
days shown in Fig. 2).

In our assessment, there are two primary mechanisms responsible
for these trends. The first is that international air traffic (number of ar-
rivals) increases with time (see Table 1), which tends to promote the
initial wave by introducing a more potent seed infection into the
network near urban centers. The second is that the population has be-
come more concentrated in urban regions, close to the international
airports where the pandemic is introduced. This trend is clearly ob-
servable in plots of population growth comparing urban and rural re-
gions (Fig. 4) (35). The confluence of increased disease influx coupled
with a population located closer to the influx point provides a simple
but reasonable explanation for the progression in simulated pandemic
trends observed across years.
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Fig. 1. The ensemble average of incidence of new infection, prevalence of infected agents, and cumulative infection temporal dynamics for simulated in-
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The role of seeding is demonstrated in Fig. 5, which shows the results
of control studies in which the 2006 and 2011 populations were seeded
with 2016 international passenger traffic (Fig. 5, A and B). The residuals
between these and the 2016 prevalence levels are shown in Fig. 5C and
show peaks corresponding approximately to the peaks of the second
Zachreson et al., Sci. Adv. 2018;4 : eaau5294 12 December 2018
epidemic waves in both 2006 and 2011 (Fig. 5C, black and orange
dashed lines, respectively).

The coincidence of these residual peaks and the second epidemic
waves indicates that the seeding conditions have a larger impact on
the first wave than on the second. The control for 2011 has an almost
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Fig. 2. Maps and histograms demonstrating geographic and temporal bimodality in epidemic spread. The histograms represent the number of statistical areas
(SA2) experiencing peak disease prevalence on a given day. The colors correspond to heuristic classification; green bars indicate the first wave, yellow bars are un-
determined, and red bars indicate the second wave. The colors on the map correspond to those in the histogram and demonstrate the geographic distribution of each
pandemic wave.
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identical prevalence profile to that of 2016 during the peak of the epi-
demic. On the other hand, seeding does not account for the decrease in
the intensity of the second pandemic wave from year to year, a trend
that we ascribe to increased urbanization.

In our model, the epidemic can only spread outside of the seeding
regions through the work and school commuter networks, which are
known to be important to influenza propagation (36–38). Therefore,
the inclusion of rural regions outside of seeding zones in the first wave
for 2011 and 2016 pandemics (clearly observable in the maps; Fig. 2)
indicates that the travel-to-work (TTW)network is partially responsible
for the increase in the first pandemic wave and the decrease of the sec-
ond. However, the concentration of the urban population within the
Zachreson et al., Sci. Adv. 2018;4 : eaau5294 12 December 2018
seeding regions makes this contribution relatively minor because direct
seeding and local transmission dominates the dynamics. Although it is
beyond the scope of the present work, the coupled effect of urbanization
trends and mobility network evolution on epidemic spread will be the
subject of future investigations. Contact network properties are known
to be essential factors in contagion spread (39). It is feasible that contact
network evolution could be decoupled from the urbanization process to
stall or reverse the observed trends in pandemic dynamics. Through this
line of inquiry,we hope to designnetwork-based pandemic intervention
and urban engineering strategies that will make rapidly urbanizing so-
cieties more resilient to pandemics (40).
CONCLUSION
By applying a high-fidelity epidemic simulation of the spread of influ-
enza through theAustralian population of 2006, 2011, and 2016, respec-
tively, we have observed an increase in pandemic spreading rate and
peak prevalence, combined with decreasing urban-rural bimodality.
These trends are associated with increased international air travel and
a more urbanized population distribution. The net effect of these two
coacting mechanisms is a shift from a highly bimodal epidemic (both
temporally and geographically) to an increasingly monomodal dynam-
ics where the initial wave dominates. Themobility network extends this
phenomenon outside the urban seeding regions. Incidentally, although
we observe a net decrease in geographic synchrony over the years in-
vestigated here, the observed trends appear to predict a future increase
in national epidemic synchrony, as the second wave becomes negligible
and the initial wave becomesmore prominent and peaked. The trend in
peak prevalence is particularly worrying, as it indicates a nonlinear in-
crease in strain onmedical infrastructure that current public health pol-
icy does not take into account with fixed per-capita hospital capacity.
Mechanistically, increased air traffic accounts for the trend of earlier
peak dates and increased magnitude of the first pandemic wave, while
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Fig. 3. Analysis of bimodality in disease prevalence. (A) The state-level prevalence for New South Wales (NSW) and South Australia (SA), comparing prevalence
curves for 2006 and 2016. (B) National prevalence for 2016 and the two Gaussian curves used to fit the data. (C) Increasing interpeak separation, increasing aspect ratio
of the first mode, and decreasing aspect ratio of the second mode (error bars: ±SEM).
Table 1. Average daily incoming international air traffic.
Airport
 State

Year
2006
 2011
 2016
Sydney
 New South Wales
 13,214
 15,995
 19,991
Melbourne
 Victoria
 5,923
 8,557
 12,802
Brisbane
 Queensland
 5,053
 5,946
 7,299
Perth
 Western Australia
 2,766
 4,512
 5,906
Gold Coast
 Queensland
 285
 1,044
 1,435
Adelaide
 South Australia
 492
 766
 1,170
Cairns
 Queensland
 1,186
 707
 824
Darwin
 Northern Territory
 160
 356
 355
Townsville
 Queensland
 0
 11
 39
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the commuter network and shifting population distribution are respon-
sible for the systematic decrease in the intensity of the second pandemic
wave. All three of these causal factors are associated with increased ur-
banization. To our knowledge, this work provides the first example of
(i) pandemic simulations across years comparing historical time points
and (ii) epidemic bimodality mechanistically associated with an empir-
ical interaction network representing a real social system.
METHODS
Data preprocessing
Census data used to produce the sample populations were preprocessed
to remove nongeographical census regions and ensure consistency across
different spatial scales. Australian census data are publicly available
through the ABS’ online platform Census TableBuilder. To generate
our sample populations, we used a subset of demographic data relating
to the following characteristics of interest: dwelling location, employment
status/work location, household composition, sex, and age. To gather this
information, we accessed the following datasets: (i) statistical area
level 1 (SA1) [usual residence (UR)] by AGEP (population count by
age) and SEXP (population count by sex), (ii) SA1 (UR) by CDCF
(count of dependent children in family) and NPRD (number of per-
sons usually resident in dwelling), and (iii) SA1 (UR) by employment
destination zone (DZN) [place of work (POW)].

All exported data are subject to perturbation to preserve the ano-
nymity of individuals as per the Australia Census and Statistics Act
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1905. The relative effect of perturbation becomes more prominent with
the increased parsing of data. This effect is most severe in the TTWnet-
works, as these break the population into the smallest groups.

The net effect of these perturbations can lead to inconsistencies be-
tween data amalgamated for different spatial partitions. For example,
accumulating commuter data on the level of (small) SA1 partitions can-
not reproduce the ABS-provided statistics over (larger) SA2 partitions
and can lead to the creation of nonexistent edges in the SA2 (UR) to SA2
(POW) TTW network.

To avoid artificial links in the disease transmission network, we re-
moved those SA1 toDZN entries that could not be accounted for on the
level of SA2 [i.e., that produced nonexistent edges when amalgamated
to the scale of SA2 (UR) to SA2 (POW)]. Because of a change in theABS
procedure for introducing perturbations into the 2016 data, some addi-
tional processing was required to ensure consistency between 2011 and
2016. This procedure involved the recovery of TTW network edges by
sampling over several additionalABSdatasets.Wewill release thismod-
ified dataset and outline our sampling procedure in detail in our forth-
coming publication (41).

Initialization
We began by generating sample populations based on census data from
the three years investigated. The datasets that inform our sampling
procedure describe local area populations on the order of several hundred
people (SA1 in both 2016 and 2011, and Census District in 2006). These
datasets provide population (e.g., age, sex, and employment status) and
housing (e.g., household size and composition) statistics. These were used
as (dependent) probability density functions in the stochastic generation
of households and agents, respectively. Additional details of the popula-
tion generation procedure can be found in the Supplementary Materials.
We positioned schools pseudodeterministically based on their postal code
as reported by theAustralianCurriculum,Assessment andReportingAu-
thority (ACARA), a noncensus dataset that contains the most complete
information available on school enrollment numbers and locations since
2008 (note that we used 2008 school locations and enrollments in place of
2006 data that were not available) (42). We then assigned students to
schools based on the proximity rules described in our previous work (31).

Seeding the pandemic
To realistically model the domestic spread of the disease, we assumed
that the Australian population is exposed to the strain once it is a global
pandemic. Following the approach of Germann et al. (28), we modeled
this influx of disease by introducing the pandemic to local areas within
50 km of international airports every day. This dynamic seeding
procedure infects the population within the seeding zone proportionally
to the average daily incoming number of passengers reported by the Bu-
reau of Infrastructure, Transport and Regional Economics (43). Full de-
tails of the dynamic seedingprocedure canbe found in section 3.4 of (31).
Although the seeding procedure between years is methodologically iden-
tical, differences in international airport traffic between years (seeTable 1)
mean that the dynamic seeding procedures are crucially different.

Disease transmission
The pandemic can spread within households, neighborhoods, schools,
and workplaces according to the transmission probabilities set out in
our previous work (31). During each 24-hour period, a daytime phase
occurs during which infected individuals can spread the infection to
others in their working groups comprising approximately 10 others
working in the same “destination zone” [these groups include classes,
Zachreson et al., Sci. Adv. 2018;4 : eaau5294 12 December 2018
grades, and schools for teachers and students, which havemore than 10
people; see (31)]. This is followed by a nighttime phase duringwhich the
infection can spread within households, household clusters, and neigh-
borhoods. The pandemic can only spread between statistical areas dur-
ing the daytime phase, as this is the largest geographical area of
interaction in the nighttime phase. Further details of the transmission
model are given in the Supplementary Materials.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/12/eaau5294/DC1
Movie S1. The color mapped, temporal evolution of the average simulated prevalence for
2006, using the SA2 partition.
Movie S2. The color mapped, temporal evolution of the average simulated prevalence for
2011, using the SA2 partition.
Movie S3. The color mapped, temporal evolution of the average simulated prevalence for
2016, using the SA2 partition.
Fig. S1. Incidence proportion for various Ro values.
Fig. S2. Prevalence proportion for various Ro values.
Fig. S3. Attack rate for various Ro values.
Model description
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